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An Alphabetical Approach to the Nivat’s Conjecture

The unidimensional case

Fixed a finite alphabet A, let AZ to be the product space. A
sequence ξ ∈ AZ has the form (ξi )i∈Z, where ξi ∈ A for all i ∈ Z.

Definition
A sequence ξ = (ξi )i∈Z is said to be periodic of period m ≥ 1 if
ξi+m = ξi for all i ∈ Z.
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Given a sequence ξ ∈ AZ, the n-complexity of ξ, denoted by
Pξ(n), is defined to be the number of distinct words of the form
ξiξi+1 · · · ξi+n−1 appearing in ξ.
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An Alphabetical Approach to the Nivat’s Conjecture

The unidimensional case

Since techniques used to address the Nivat’s conjecture usually
relies on Morse-Hedlund’s Theorem, an improved version of this
classical result may mean a new step towards a proof for the
conjecture.

Theorem (Alphabetical Morse-Hedlund’s Theorem)

For a sequence ξ ∈ AZ making use of all colors of A, if there exists
n ∈ N such that

Pξ(n) ≤ n + |A| − 2,

then ξ is periodic of period at most n + |A| − 2.
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The Nivat’s Conjecture

Fixed a finite alphabet A, let AZd
to be the product space. A

configuration η ∈ AZd
has the form (ηg )g∈Zd , where ηg ∈ A for all

g ∈ Zd .

Definition
A configuration η = (ηg )g∈Zd is said to be periodic of period

h ∈ (Zd)∗ if ηg+h = ηg for all g ∈ Zd .
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The Nivat’s Conjecture

The complexity function Pη(n, k) is defined to be the number of
distinct n × k rectangles of symbols appearing in η.

Conjecture (Nivat’s Conjecture [7], 1997)

For η ∈ AZ2
, if there are n, k ∈ N such that Pη(n, k) ≤ nk , then η

is periodic.

I It is a natural generalization of Morse-Hedlund’s Theorem for
the two-dimensional case.

I It is not an equivalence.

I It fails to hold in higher dimensions (Sander and Tijdman).
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The Nivat’s Conjecture

Example

For n ≥ 3, let η ∈ {0, 1}Z3
to be the configuration defined by

ηg := 1 if g = (i , 0, 0) or g = (0, i , n) for i ∈ Z,

and ηg := 0 otherwise. It is easy to see that

Pη(n, n, n) = 2n2 + 1 < n3.

however, η is not a periodic configuration.
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The Nivat’s Conjecture

Previous Results

I Sander and Tijdeman showed that, if there is n ∈ N such that
Pη(n, 2) ≤ 2n, then η ∈ AZ2

is periodic.

I Epifanio, Koskas and Mignosi [4] showed that, if there are
n, k ∈ N such that Pη(n, k) ≤ 1

144nk, then η ∈ AZ2
is

periodic.

I Quas and Zamboni [8] showed that, if there are n, k ∈ N such
that Pη(n, k) ≤ 1

16nk, then η ∈ AZ2
is periodic.

I Cyr and Kra [2] showed that, if there is n ∈ N such that
Pη(n, 3) ≤ 3n, then η ∈ AZ2

is periodic.

I Kari and Szabados [5] showed that, if Pη(n, k) ≤ nk holds for
infinitely many pairs n, k ∈ N, then η is periodic.
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Previous Results

Theorem (Cyr and Kra)

For η ∈ AZ2
, if there are n, k ∈ N such that Pη(n, k) ≤ 1

2nk, then
η is periodic.
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Example

It is easy to see that

Pη(n, k) = n + k if n + k ≤ 7

Pη(n, k) = n + k +
1

2
(n + k − 7)(n + k − 6) otherwise

and therefore

Pη(n, k) >
1

2
nk ∀ n, k ∈ N.

However, we have

Pη(3, 4) = 7 =
1

2
(3× 4) + 1 =

1

2
(3× 4) + |colors| − 1.
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Example

The previous example does not satisfy the conditions of

Theorem (Cyr and Kra)

For η ∈ AZ2
, if there are n, k ∈ N such that Pη(n, k) ≤ 1

2nk, then
η is periodic.

But it satisfies the conditions of

Theorem (Colle’s PhD Thesis)

For η ∈ AZ2
, if there are n, k ∈ N such that

Pη(n, k) ≤ 1

2
nk + |A| − 1 =

(
1

2
+
|A| − 1

nk

)
nk,

then η is periodic.
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Expansive Subdynamics

Using the notion of expansive subspaces introduced by Boyle and
Lind, Cyr and Kra shed a new light towards a proof for Nivat’s
Conjecture by relating expansive subspaces to periodicity.

Definition
Let X ⊂ AZd

be a subshift. A subspace F of Rd is said to be
expansive on X if there is t > 0 such that

∀ x , y ∈ X , x |F t = y |F t =⇒ x = y ,

where F t := {g ∈ Zd : dist(g ,F ) ≤ t}. If a subspace fails to meet
this condition, it is called a nonexpansive subspace on X .
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Expansive Subdynamics

Some Known Facts

Denote Xη := Orb(η)

I Two nonexpansive 1-d subspaces on Xη
. ⇒ η ∈ AZ2

aperiodic.

I Low complexity and at most one nonexpansive 1-d subspace
. ⇒ η ∈ AZ2

periodic (Cyr-Kra [3]).

I No nonexpansive 1-d subspaces on Xη
. ⇒ η ∈ AZ2

2-periodic (Boyle-Lind [1]).
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Expansive Subdynamics

Generating Sets

Definition (Cyr and Kra)

Given η ∈ AZ2
, a point g ∈ S is said to be η-generated by S ⊂ Z2

when Pη(S\{g}) = Pη(S). A finite, nonempty, convex set S ⊂ Z2

for which every vertex is η-generated is called an η-generating set.

I Low complexity ensures the existence of η-generating set.
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Expansive Directions

Following Boyle and Lind, we use a suitable notion of
expansiveness.

I For an 1-d subspace ` of R2, let ~H and ~H denote the two
closed half-planes of R2 with boundary `.

Definition
Given η ∈ AZ2

, let ` an 1-d subspace of R2. We say that ~̀ is an
expansive direction on Xη if

∀ x , y ∈ Xη = Orb(η), x | ~H∩Z2 = y | ~H∩Z2 =⇒ x = y .

If ~̀ fails to meet this condition, it is called a nonexpansive
direction on Xη.

I We can think in ~̀ and ~` as being the oriented edges of the
half-planes ~H and ~H (positively oriented).
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Expansive Directions

Proposition

Suppose η ∈ AZ2
is periodic. If ~̀ ∈ G1 is a non-expansive direction

on Xη, then the oriented line ~` ∈ G1 antiparallel to ~̀ is also a
non-expansive direction on Xη.
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Expansive Directions

For x ∈ Xη = Orb(η), a convex set U ∈ FC and an oriented line
~̀ ∈ G1 through the origin in R2, let L~̀(U , x) the subfamily of
L(U , η) = {(T gη)|U : g ∈ Z2} defined by

L~̀(U , x) :=
{

(T t~v`x)|U : t ∈ Z
}
.

Given U ∈ FVol
C , for an oriented line ~̀ ∈ G1 and γ ∈ L(U\~̀U , η),

we put
N~̀,U (γ) = |{γ′ ∈ L(U , η) : γ′|U\~̀U = γ}|.
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Expansive Directions

If ~̀ ∈ G1 is a non-expansive direction on Xη and U ∈ FVol
C is an

η-generating set, then there is configuration x ∈ Xη such that

N~̀,U (γ) > 1 ∀ γ ∈ L~̀(U\~̀U , x). (1)

The set formed by the configurations x ∈ Xη = Orb(η) that

satisfying (1) is denoted by N (~̀,U).
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Expansive Directions

For any x ∈ N (~̀,U), from the equality

Pη(U)−Pη(U\~̀U ) =
∑

γ∈L(U\~̀U ,η)

(
|{γ′ ∈ L(U , η) : γ′|U\~̀U = γ}| − 1

)
we conclude that

Pη(U)− Pη(U\~̀U ) ≥
∑

γ∈L~̀ (U\~̀U ,x)

(
N~̀,U (γ)− 1

)
≥
∣∣∣L~̀(U\~̀U , x)

∣∣∣ .
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Expansive Directions

A Connection Between Nonexpansive Directions and Periodicity

The following lemma shows how nonexpansive directions are
connected to the periodicity of some specific configurations.

Lemma
Given η ∈ AZ2

, let ~̀ be a nonexpansive direction on Xη and let

U ⊂ Z2 be an η-generating set. For x ∈ N (~̀,U), if

Pη(U)− Pη(U\~̀U ) ≤ p + |A(~̀,U , x)| − 2 for some p ∈ N,

then the restriction of x to the (~̀,U , p)-strip is periodic of period
tv with t ≤ p + |A(~̀,U , x)| − 2.
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Expansive Directions

A Connection Between Nonexpansive Directions and Periodicity

Since ~̀ is a nonexpansive direction, it follows that∣∣{x |Rj
: j ∈ Z}

∣∣ ≤ Pη(U)− Pη(U\$) ≤ p + |A(~̀,U , x)| − 2.

Hence, the Alphabetical Morse-Hedlund’s Theorem implies that the
restriction of x to the (~̀,U , p)-strip is periodic of period tv with

t ≤ p + |A(~̀,U , x)| − 2.
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Expansive Directions

A Connection Between Nonexpansive Directions and Periodicity

Definition
Given η ∈ AZ2

, let ~̀ ∈ G1 be a non-expansive direction on Xη. We

say that an (η, ~̀)-generating set U ∈ FVol
C is (~̀, p)-balanced if

(i) for any oriented line ~̀′ ⊂ R2 parallel to ~̀, if ~̀′ 6= ~̀U and
`′ ∩ U 6= ∅, then |`′ ∩ U| ≥ p,

(ii) for each x ∈ N (~̀,U) with |A(~̀,U , x)| > 1, there is an integer
px ≤ p such that

Pη(U) ≤ Pη(U\~̀U ) + px + |A(~̀,U , x)| − 2.
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Expansive Directions

A Connection Between Nonexpansive Directions and Periodicity

Definition
A finite, nonempty, convex set U ⊂ Z2 is said to be a quasi-regular
set if, for every edge of U , there is an antiparallel edge of U with
the same cardinality.

I If there is a quasi-regular set U ∈ FVol
C such that

Pη(U) ≤ 1
2 |U|+ |A| − 1, then for every oriented line ~̀ ∈ G1

that is a non-expansive direction on Xη there exists

(~̀, p)-balanced set.

I If ~̀ ∈ G1 is a non-expansive direction on Xη and there exists

(~̀, p)-balanced set, then the oriented line ~` ∈ G1 antiparallel
to ~̀ also is a non-expansive direction on Xη.
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Our Main Result

Theorem (Colle’s PhD thesis)

For η ∈ AZ2
making use of all colors of A, if there is a quasi-regular

set U ⊂ Z2 such that Pη(U) ≤ 1
2 |U|+ |A| − 1, then η is periodic.
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Idea of the proof (following Cyr and Kra)

The proof of this theorem is done by contradiction via multiple
steps. Assuming the existence of a counter-example, another one is
constructed with more structure, i.e., with an unbounded convex
region of double periodicity. Fixed a generating set with more
properties, a contradiction will arise from the fact that the number
of configurations (coloring) occurring at the boundary of this
doubly periodic region is greater than possible.
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Given η ∈ AZ2
, suppose that there exist n, k ∈ N such that

Pη(n, k) ≤ nk. If |A| ≥ 1
2nk + 1, then

Pη(n, k) ≤ nk ≤ 1

2
nk + |A| − 1,

what implies that η is periodic.

Problem. Given η ∈ AZ2
, suppose there exist n, k ∈ N such that

Pη(n, k) ≤ nk. Furthermore, suppose Pη(κ, τ) > κτ for every
κ, τ ∈ N with 1 ≤ κτ < nk. In this case, there is an alphabet A′
and a configuration η′ ∈ (A′)Z2

such that |A′| ≥ 1
2nk + 1 and

Pη′(n, k) = Pη(n, k)?
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|A| = 2, Pη(R1,5) = 5
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|A′| = 5, Pη′(R1,5) = 5
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|A| = 2, Pη(R3,3) = 9
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|A′| = 9, Pη′(R3,3) = 9
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