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Definition

Let (X, 0) be a faithful shift action. A homeomorphism ¢ : X — X is a
symmetry of (X,0) if Poo=00®.
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Definition

Let (X, 0) be a faithful shift action. A homeomorphism ¢ : X — X is a
symmetry of (X,0) if Poo=00®.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition

Let (X, 0) be a faithful shift action. A homeomorphism ¢ : X — X is a
reversor of (X,0) if oo =010 0.

X = AZ, R(x)n := x_n; R is a reflection.
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Definition

Let (X, 0) be a faithful shift action. A homeomorphism ¢ : X — X is a
symmetry of (X,0) if oo =009.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition
Let (X, 0) be a faithful shift action. A homeomorphism ¢ : X — X is a
reversor of (X,0) if oo =0"1o0®.

X = A%, R(x)n := x_pn; R is a reflection.

Definition (Symmetry group, Reversing symmetry group)

S(X) := {9 : X — X: & is a homeomorphism,® o 0 = 0 0 d}
R(X) := {®:X — X : & is a homeomorphism,® o 0 = ¢! 0 d}
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The Curtis-Hedlund-Lyndon theorem for Reversors

Let X be a faithful one-dimensional shift over the finite alphabet A. For
any reversor ® € R(X) \ S(X), there are non-negative integers ¢, r and a
map ¢ : AT — A such that (D(x)), = G(X_p_rs- s X pee s X pig)-

yA—n»
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The Curtis-Hedlund-Lyndon theorem for Reversors

Let X be a faithful one-dimensional shift over the finite alphabet A. For
any reversor ® € R(X) \ S(X), there are non-negative integers ¢, r and a
map ¢ : AT — A such that (D(x)), = G(X_p_rs- s X pee s X pig)-

In other words, if ® € R(X) \ S(X), then ® = W o R where ¥ : R(X) — X
is a sliding block code.
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Higher dimensional "reversors"

Let (X, 01,02) be a Z2-shift over a finite A (G := (01, 02) ~ Z?).
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Higher dimensional "reversors"

Let (X, 01,02) be a Z2-shift over a finite A (G := (01,02) ~ Z?).Let H be
the group of homeomorphisms of X. Then

S(X) = centy(G) ={h e H : ho{"o3 = o7"o5h, for m,n € Z};
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Higher dimensional "reversors"

Let (X, 01,02) be a Z2-shift over a finite A (G := (01,02) ~ Z?).Let H be
the group of homeomorphisms of X. Then
S(X) = centy(G) ={h e H : ho{"o3 = o7"o5h, for m,n € Z};

so we define the extended symmetry group

R(X) := normy(G) ={h € H : hG = Gh}.

Note that hG = Gh is only possible when the conjugation action

g +— hgh™! sends a set of generators of G to a (possibly different) set of
generators. Since G is a free Abelian group of rank 2 by our assumption, its
automorphism group is Aut (G) ~ GL(2,Z), the group of integer
2x2-matrices M with det(M) € {£1}.
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Example: The full shift

The extended symmetry group of the full shift X = A% s given by
R(X) ~ S(X) x GL(d, Z).
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Example: The full shift

The extended symmetry group of the full shift X = A% s given by
R(X) ~ §(X) x GL(d, Z).
Let M € GL(d,Z) and consider the mapping x — hp(x) defined by
hv(X)n = Xp-1n-

Clearly, hy is a continuous mapping of X into itself and is invertible.
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Let M € GL(d,Z) and consider the mapping x — hp(x) defined by
hv(X)n = Xp-1n-

Clearly, hy is a continuous mapping of X into itself and is invertible.
Also, hphpy = b, whence ¢ - GL(d,Z) — H(X) defined by M — hpy
is a group homomorphism.

Reem Yassawi Reversing and Extended Symmetry group Friday 16th June 2017 5/ 22



Example: The full shift

The extended symmetry group of the full shift X = A% s given by
R(X) ~ §(X) x GL(d, Z).
Let M € GL(d,Z) and consider the mapping x — hp(x) defined by
hv(X)n = Xp-1n-

Clearly, hy is a continuous mapping of X into itself and is invertible.
Also, hphpy = b, whence ¢ - GL(d,Z) — H(X) defined by M — hpy
is a group homomorphism.

Given M, the action g — h,\/,gh,;,:l on G sends o} to ja}nf", for any
1<i<d, sop(M)e R(X).
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Example: The full shift

The extended symmetry group of the full shift X = A% s given by
R(X) ~ §(X) x GL(d, Z).
Let M € GL(d,Z) and consider the mapping x — hp(x) defined by
hv(X)n = Xp-1n-

Clearly, hy is a continuous mapping of X into itself and is invertible.
Also, hphpy = b, whence ¢ - GL(d,Z) — H(X) defined by M — hpy
is a group homomorphism.

Given M, the action g — h,\/,gh,;,:l on G sends o} to ja}nf", for any
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Example: The full shift

The extended symmetry group of the full shift X = A% s given by
R(X) ~ §(X) x GL(d, Z).
Let M € GL(d,Z) and consider the mapping x — hp(x) defined by
hv(X)n = Xp-1n-

Clearly, hy is a continuous mapping of X into itself and is invertible.
Also, hphpy = b, whence ¢ - GL(d,Z) — H(X) defined by M — hpy
is a group homomorphism.

Given M, the action g — h,\/,gh,;,:l on G sends o} to ja}nf", for any
1<i<d, sop(M)e R(X).

Consider K := ¢(GL(d,Z)) < R(X). Since ¢ is injective, K ~ GL(d, Z).
Any h € R(X) acts on o7 ... 0q, this induces ¢ : R(X) — GL(d,Z) ~ K.
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Example: The full shift

The extended symmetry group of the full shift X = AZ" is given by

R(X) ~ §(X) x GL(d, Z).
Let M € GL(d,Z) and consider the mapping x — hp(x) defined by

hv(X)n = Xpp-1p-

Clearly, hy is a continuous mapping of X into itself and is invertible.
Also, hphpy = b, whence ¢ - GL(d,Z) — H(X) defined by M — hpy
is a group homomorphism. "
Given M, the action g — hy,ghy," on G sends o; to ;0 7 for any
1<i<d, sop(M)e R(X).
Consider K := p(GL(d,Z)) < R(X). Since ¢ is injective, K ~ GL(d, Z).
Any h € R(X) acts on o7 ... 0q, this induces ¢ : R(X) — GL(d,Z) ~ K.
So ¢ o 1) is a group endomorphism of R(X) into K with kernel S(X), and
which fixes K. Hence

R(X) = S(X) 1 K ~ S(X) x GL(d, Z).

Y
~
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Some useful lemmas

Recall the definition of ¢ : R(X) — GL(d, Z).
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Some useful lemmas

Recall the definition of ¢ : R(X) — GL(d, Z).

Lemma (CHL, extended symmetries)

Let (X,Z9) be a shift over a finite alphabet A, with faithful shift action.
Then any ® € R(X) is of the form ® = ®hy with M = ¢(®) and where
¢ hy(X) — X is again a sliding block map.
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Some useful lemmas

Recall the definition of ¢ : R(X) — GL(d, Z).

Lemma (CHL, extended symmetries)

Let (X,Z9) be a shift over a finite alphabet A, with faithful shift action.
Then any ® € R(X) is of the form ® = ®hy with M = ¢(®) and where
¢ hy(X) — X is again a sliding block map.

Lemma (extended symmetry groups as semidirect products)

Let X C AZ be a shift with faithful Z9-action and symmetry group S(X).
Assume further that R(X) contains a subgroup H that satisfies H ~ 1(H)
together with ¢(H) = (R(X)). Then, the extended symmetry group of
(X,Z9) is

R(X) = S(X) x H.
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The Chair Substitution’s extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)
The Chair shift X¢ has Z? x D4 as extended symmetry group.
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The Chair Substitution’s extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)
The Chair shift X¢ has Z? x D4 as extended symmetry group.
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Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let (X,Z9) be a one-dimensional faithful shift and at least one dense orbit.
Suppose further that the group rotation (G,+«) is its MEF, with

7w : X — G the corresponding factor map.

Then, there is a group homomorphism r : S(X) — G such that

m(P(x)) = k(P) + 7(x)

holds for all x € X and G € S(X).
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Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let (X,Z9) be a one-dimensional faithful shift and at least one dense orbit.
Suppose further that the group rotation (G,+«) is its MEF, with

7w : X — G the corresponding factor map.

Then, there is a group homomorphism r : S(X) — G such that

m(P(x)) = k(P) + 7(x)

holds for all x € X and G € S(X). Moreover, if K(Z9) is a free Abelian
group there is an extension of k to a 1-cocycle of the action of R(X) on G

by ¢ : R(X) — H(G), with
R(PV) = w(®) + ¢(®)(r(V))

for all ®,V € R(X). Any ® € R(X) induces a unique mapping on G that
acts as z — k(P) + ¢(P)(2).
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Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let (X,Z9) be a one-dimensional faithful shift and at least one dense orbit.
Suppose further that the group rotation (G,+«) is its MEF, with

7w : X — G the corresponding factor map.

Then, there is a group homomorphism r : S(X) — G such that

m(P(x)) = k(P) + 7(x)

holds for all x € X and G € S(X). Moreover, if K(Z9) is a free Abelian
group there is an extension of k to a 1-cocycle of the action of R(X) on G
by ¢ : R(X) — H(G), with

R(PV) = r(®) + ((®)(r(V))

for all ®,V € R(X). Any ® € R(X) induces a unique mapping on G that
acts as z — k(®) + ((®)(2). If ¢ ;== min{|7~1(2)| : z € G} < o0, then
k:S8(X)— G and k: R(X)\ S(X) — G are each at most c-to-one,
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Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let (X,Z9) be a one-dimensional faithful shift and at least one dense orbit.
Suppose further that the group rotation (G,+«) is its MEF, with

7w : X — G the corresponding factor map.

Then, there is a group homomorphism r : S(X) — G such that

m(P(x)) = k(P) + 7(x)

holds for all x € X and G € S(X). Moreover, if K(Z9) is a free Abelian
group there is an extension of k to a 1-cocycle of the action of R(X) on G

by ¢ : R(X) — H(G), with

R(PV) = r(®) + ((®)(r(V))

for all ®,V € R(X). Any ® € R(X) induces a unique mapping on G that
acts as z — k(®) + ((®)(2). If ¢ ;== min{|7~1(2)| : z € G} < o0, then
k:S8(X)— G andk: R(X) \ S(X) — G are each at most c-to-one, and
foranyd > c, {ze Gln 7 (2)|=d} =C({z € G: |77 1(2)| = d}) + (D)
holds for each ® € R(X).
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The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift (Xc, T1, T2) is
(Zy % Zp,+(1,0),+(0,1)). The factor mapping m : Xc — Zo x Lo is

almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.
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(Zy % Zp,+(1,0),+(0,1)). The factor mapping m : Xc — Zo x Lo is
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"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings".
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The maximal equicontinuous factor of the Chair shift (Xc, T1, T2) is
(Zy % Zp,+(1,0),+(0,1)). The factor mapping m : Xc — Zo x Lo is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings". Each point in X; is associated with a block structure
which is described by a point in Zy x Z;.
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The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift (Xc, T1, T2) is
(Zy % Zp,+(1,0),+(0,1)). The factor mapping m : Xc — Zo x Lo is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings". Each point in X, is associated with a block structure ,
which is described by a point in Zy x Z;.

The block structure does not tell you much, or possibly anything, about the
entries of the point X = (Xm,n)m,ncz, but only about the way x is tiled
with substitution squares.
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A block structure

Dashed lines are the basic configuration grid.
Black lines are boundaries of #-words.
Red lines are boundaries of #%-words.
Blue lines are boundaries of §3-words.

Reem Yassawi
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Another block structure

Dashed lines are the basic configuration grid.
Black lines are boundaries of #-words.
Red lines are boundaries of #%-words.
Blue lines are boundaries of §3-words.

Reem Yassawi
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The block structure graph: Finding repeated block

structures

0(p) = 6(r) = 0(g) = 0(s) =
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The block structure graph: Finding repeated block

structures

0(p) = 6(r) = 0(g) = 0(s) =

The set of complete block structures with multiple preimages are paths

that eventually lie in: (3)(}) (;))(‘1’)
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In this way we have
Theorem (Robinson, 1999)

If we see a block structure z in (8)(t) () ((0)() which has
infinitely many occurences of both < 8 > and ( i ) then |771(2)| = 2,

and the two preimages of z agree everywhere off y = x.
-

3
kA

v
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In this way we have
Theorem (Robinson, 1999)

If we see a block structure z in (8)(t) () ((0)() which has
infinitely many occurences of both < 8 > and ( i ) then |771(2)| = 2,

and the two preimages of z agree everywhere off y = x.
-

P
Sl
EEJ (a) EﬁJﬁ (b)

If we see a block structure z which has only entries from < (1) ) and

1 .
( 0 ) then |7=1(z)| = 2, and the two preimages of z agree everywhere off

Yy =—X.

v
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has 7> x D4 as extended symmetry group.
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has 7> x D4 as extended symmetry group.

Sketch of Proof

"The" o-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has 7> x D4 as extended symmetry group.

Sketch of Proof

"The" o-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.
D, is a maximal finite subgroup of GL(2,7Z).
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has 7> x D4 as extended symmetry group.

Sketch of Proof

"The" o-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.

D, is a maximal finite subgroup of GL(2,7Z).

Thus, by Selberg's lemma, if there are any other extended symmetries they
must by generated by a matrix with infinite order: i.e. a parabolic or
hyperbolic matrix.
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"The" o-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.

D, is a maximal finite subgroup of GL(2,7Z).

Thus, by Selberg's lemma, if there are any other extended symmetries they
must by generated by a matrix with infinite order: i.e. a parabolic or
hyperbolic matrix.

We need to show there are no such extended symmetries.
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has 7> x D4 as extended symmetry group.

Sketch of Proof

"The" o-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.

D, is a maximal finite subgroup of GL(2,7Z).

Thus, by Selberg's lemma, if there are any other extended symmetries they
must by generated by a matrix with infinite order: i.e. a parabolic or
hyperbolic matrix.

We need to show there are no such extended symmetries.

Recall that we can write every extended symmetry ® = Why, for some
M € GL(2Z), and V¥ a sliding block code.
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, )

There exist (uncountably) many pairs of points in X¢ either which

@ disagree on the main diagonal, and agree everywhere else, or

@ disagree on the diagonal y = —x and agree everywhere else.
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, )

There exist (uncountably) many pairs of points in X¢ either which

@ disagree on the main diagonal, and agree everywhere else, or
@ disagree on the diagonal y = —x and agree everywhere else.

Let F be the set of pairs of such points. An extended symmetry must send
an element of F to an element of F.

v
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, )
There exist (uncountably) many pairs of points in X¢ either which

@ disagree on the main diagonal, and agree everywhere else, or

@ disagree on the diagonal y = —x and agree everywhere else.
Let F be the set of pairs of such points. An extended symmetry must send
an element of F to an element of F. )

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

M({y =x, ory =—x}) #{y =x,y = —x}.
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, )
There exist (uncountably) many pairs of points in X¢ either which

@ disagree on the main diagonal, and agree everywhere else, or

@ disagree on the diagonal y = —x and agree everywhere else.
Let F be the set of pairs of such points. An extended symmetry must send
an element of F to an element of F. )

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

My =x, ory = —x}) #{y =x,y = —x}.
Thus hp sends an element of F to a pair (x,y) not in F.
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Let F be the set of pairs of such points. An extended symmetry must send
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Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

M({y =x, ory =—x}) #{y =x,y = —x}.

Thus hp sends an element of F to a pair (x,y) not in F. But
® = WVo hy : X. — Xc sends elements of F to points in F.

X ™ h(X) % X
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, )

There exist (uncountably) many pairs of points in X¢ either which

@ disagree on the main diagonal, and agree everywhere else, or

@ disagree on the diagonal y = —x and agree everywhere else.
Let F be the set of pairs of such points. An extended symmetry must send
an element of F to an element of F. )

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

M({y =x, ory =—x}) #{y =x,y = —x}.

Thus hp sends an element of F to a pair (x,y) not in F. But
® = WVo hy : X. — Xc sends elements of F to points in F.

Xe ™ h(Xo) % X..
But since W is a sliding block code, W(hym(x, y)) cannot belong to F.
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The Ledrappier shift

Some linear cellular automata satisfy symmetry rigidity. Let & : AZ — AZ
2 . . .

and let Y C A% be the space of all possible spacetime diagrams for ®; Y

is a 2-dimensional shift (Y, op,0,), invariant under Haar measure.

Theorem (Kitchens & Schmidt, 2000)

Let ®1 and &, generate shifts of spacetime diagrams Y1 and Y,. Suppose
that (Y1, 0p4,0,) and (Ya,04,0,) are mixing and irreducible. Then every
measurable conjugacy F is almost everywhere an affine map, i.e.

F(x) = G(x) + ¢ almost everywhere with G a group isomorphism.

Theorem (Kitchens & Schmidt, 2000)

If & :{0,1}% — {0,1}* is the Ledrappier map ®(x) = x + o(x), then any
topological self conjugacy F : Y — Y is of the form F(x) = o'0](x) for
some m and n.
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The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift X; has Z? x D3 as extended symmetry group.
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The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift X; has Z? x D3 as extended symmetry group.

Some proof ideas: The following matrices send "Ledrappier" triangles to
"Ledrappier" triangles

10 01 -1 -1 0 1 1 0 -1 -1 .
0 1/°\1 0/’\ 0 1/)’\-1 —-1)’\-1 —-1)’\1 0 '
they constitute D3. The maximal finite subgroup containing D3 is Deg,

1
which is generated by the extra matrix M = (% % )2 = (9 71). We will

show that M does not give any extended symmetries.
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The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift X; has Z? x D3 as extended symmetry group.

Some proof ideas: The following matrices send "Ledrappier" triangles to
"Ledrappier" triangles

o 2) G o) (o ) (5 A) (G 5 G o)y

they constitute D3. The maximal finite subgroup containing D3 is Deg,

1
which is generated by the extra matrix M = (% % )2 = (9 71). We will
show that M does not give any extended symmetries. A computation gives
that

Y = h(X1) = {x € {0,135 ¢ X ) X(mi1.0) FX(mi1.n 1) =0 mod 2}.
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Xp = {x € {0, 1}%° : X(mn) + X(mi1,0) + X(mns1) =0 mod 2}.

Y = hm(Xe) = {x € {0, 1Y% : X(mm)FX(mr1.0) X (mi1.0-1) =0 mod 2}.
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Xp = {x € {0, 1}%° : X(mn) + X(mi1,0) + X(mns1) =0 mod 2}.

Y = hm(Xe) = {x € {0, 1Y% : X(mm)FX(mr1.0) X (mi1.0-1) =0 mod 2}.

Note that Y # X so if there is a reversor, it must be of the form
® = Vo hy, with ¥ : Y — X, nontrivial.
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® = Vo hy, with ¥ : Y — X, nontrivial.
Knowledge of a row in x € X determines everything above it.
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Y = hm(Xe) = {x € {0, 1Y% : X(mm)FX(mr1.0) X (mi1.0-1) =0 mod 2}.

Note that Y # X so if there is a reversor, it must be of the form

® = Vo hy, with ¥ : Y — X, nontrivial.

Knowledge of a row in x € X determines everything above it.

Knowledge of a row in y € Y determines everything below it.

So the image a row r in x € X;, which is a row r* in Y, determines the
image of the half plane below r*. But knowledge of r* determines the half
plane above r*. This contradicts the fact that WV is injective.
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So the image a row r in x € X;, which is a row r* in Y, determines the
image of the half plane below r*. But knowledge of r* determines the half
plane above r*. This contradicts the fact that WV is injective.

So D3 is the maximal finite subgroup in R(X).
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Xp = {x € {0, 1}%° : X(mn) + X(mi1,0) + X(mns1) =0 mod 2}.

Y = hm(Xe) = {x € {0, 1Y% : X(mm)FX(mr1.0) X (mi1.0-1) =0 mod 2}.

Note that Y # X so if there is a reversor, it must be of the form

® = Vo hy, with ¥ : Y — X, nontrivial.

Knowledge of a row in x € X determines everything above it.

Knowledge of a row in y € Y determines everything below it.

So the image a row r in x € X;, which is a row r* in Y, determines the
image of the half plane below r*. But knowledge of r* determines the half
plane above r*. This contradicts the fact that WV is injective.

So D3 is the maximal finite subgroup in R(X).

Now to exclude elements of infinite order, refine this argument, along with
use of

The only annihilating triangles in X, of area % are the Ledrappier triangles.
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