Reversing and Extended Symmetry groups of shifts

Michael Baake, John Roberts & Reem Yassawi

Friday 16th June 2017

Reem Yassawi

Reversing and Extended Symmetry group Friday 16th June 2017 1 / 22

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

< AP

B> B

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

Our symmetry=your automorphism!

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

Our symmetry=your automorphism!

Our automorphism=your homeomorphism!

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

Our symmetry=your automorphism! Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma^{-1} \circ \Phi$.

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

Our symmetry=your automorphism! Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma^{-1} \circ \Phi$.

Example

$$\mathbb{X} = \mathcal{A}^{\mathbb{Z}}, R(x)_n := x_{-n}; R$$
 is a reflection.

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma \circ \Phi$.

Our symmetry=your automorphism! Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi : \mathbb{X} \to \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma = \sigma^{-1} \circ \Phi$.

Example

$$\mathbb{X}=\mathcal{A}^{\mathbb{Z}}$$
, $R(x)_n:=x_{-n};$ R is a reflection.

Definition (Symmetry group, Reversing symmetry group)

$$\mathcal{S}(\mathbb{X}) := \{ \Phi : \mathbb{X} \to \mathbb{X} : \Phi \text{ is a homeomorphism}, \Phi \circ \sigma = \sigma \circ \Phi \}$$
$$\mathcal{R}(\mathbb{X}) := \{ \Phi : \mathbb{X} \to \mathbb{X} : \Phi \text{ is a homeomorphism}, \Phi \circ \sigma = \sigma^{\pm 1} \circ \Phi \}$$

Lemma

Let \mathbb{X} be a faithful one-dimensional shift over the finite alphabet \mathcal{A} . For any reversor $\Phi \in \mathcal{R}(\mathbb{X}) \setminus \mathcal{S}(\mathbb{X})$, there are non-negative integers ℓ , r and a map $\phi : \mathcal{A}^{\ell+r+1} \to \mathcal{A}$ such that $(\Phi(x))_n = \phi(x_{-n-r}, \dots, x_{-n}, \dots, x_{-n+\ell})$.

Lemma

Let \mathbb{X} be a faithful one-dimensional shift over the finite alphabet \mathcal{A} . For any reversor $\Phi \in \mathcal{R}(\mathbb{X}) \setminus \mathcal{S}(\mathbb{X})$, there are non-negative integers ℓ , r and a map $\phi : \mathcal{A}^{\ell+r+1} \to \mathcal{A}$ such that $(\Phi(x))_n = \phi(x_{-n-r}, \dots, x_{-n}, \dots, x_{-n+\ell})$.

In other words, if $\Phi \in \mathcal{R}(\mathbb{X}) \setminus \mathcal{S}(\mathbb{X})$, then $\Phi = \Psi \circ R$ where $\Psi : R(X) \to X$ is a sliding block code.

Higher dimensional "reversors"

Let $(\mathbb{X}, \sigma_1, \sigma_2)$ be a \mathbb{Z}^2 -shift over a finite \mathcal{A} $(\mathcal{G} := \langle \sigma_1, \sigma_2 \rangle \simeq \mathbb{Z}^2)$.

э

Let (X, σ_1, σ_2) be a \mathbb{Z}^2 -shift over a finite \mathcal{A} ($\mathcal{G} := \langle \sigma_1, \sigma_2 \rangle \simeq \mathbb{Z}^2$).Let \mathcal{H} be the group of homeomorphisms of X. Then

 $\mathcal{S}(\mathbb{X}) = \operatorname{cent}_{\mathcal{H}}(\mathcal{G}) = \{ h \in \mathcal{H} : h\sigma_1^m \sigma_2^n = \sigma_1^m \sigma_2^n h, \text{ for } m, n \in \mathbb{Z} \};$

Let (X, σ_1, σ_2) be a \mathbb{Z}^2 -shift over a finite \mathcal{A} ($\mathcal{G} := \langle \sigma_1, \sigma_2 \rangle \simeq \mathbb{Z}^2$).Let \mathcal{H} be the group of homeomorphisms of X. Then

 $\mathcal{S}(\mathbb{X}) = \operatorname{cent}_{\mathcal{H}}(\mathcal{G}) = \{h \in \mathcal{H} : h\sigma_1^m \sigma_2^n = \sigma_1^m \sigma_2^n h, \text{ for } m, n \in \mathbb{Z}\};\$

so we define the extended symmetry group

$$\mathcal{R}(\mathbb{X}) := \operatorname{norm}_{\mathcal{H}}(\mathcal{G}) = \{h \in \mathcal{H} : h\mathcal{G} = \mathcal{G}h\}.$$

Let (X, σ_1, σ_2) be a \mathbb{Z}^2 -shift over a finite \mathcal{A} ($\mathcal{G} := \langle \sigma_1, \sigma_2 \rangle \simeq \mathbb{Z}^2$).Let \mathcal{H} be the group of homeomorphisms of X. Then

 $\mathcal{S}(\mathbb{X}) = \operatorname{cent}_{\mathcal{H}}(\mathcal{G}) = \{ h \in \mathcal{H} : h\sigma_1^m \sigma_2^n = \sigma_1^m \sigma_2^n h, \text{ for } m, n \in \mathbb{Z} \};$

so we define the extended symmetry group

$$\mathcal{R}(\mathbb{X}) := \operatorname{norm}_{\mathcal{H}}(\mathcal{G}) = \{h \in \mathcal{H} : h\mathcal{G} = \mathcal{G}h\}.$$

Note that $h\mathcal{G} = \mathcal{G}h$ is only possible when the conjugation action $g \mapsto hgh^{-1}$ sends a set of generators of \mathcal{G} to a (possibly different) set of generators. Since \mathcal{G} is a free Abelian group of rank 2 by our assumption, its automorphism group is Aut $(\mathcal{G}) \simeq \operatorname{GL}(2, \mathbb{Z})$, the group of integer 2×2 -matrices M with det $(M) \in \{\pm 1\}$.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

 $h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$

Clearly, h_M is a continuous mapping of X into itself and is invertible.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

$$h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$$

Clearly, h_M is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_M h_{M'} = h_{MM'}$, whence $\varphi : \operatorname{GL}(d, \mathbb{Z}) \to \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_M$ is a group homomorphism.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

$$h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$$

Clearly, h_M is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_M h_{M'} = h_{MM'}$, whence $\varphi : \operatorname{GL}(d, \mathbb{Z}) \to \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_M$ is a group homomorphism.

Given M, the action $g \mapsto h_M g h_M^{-1}$ on \mathcal{G} sends σ_i to $\prod_j \sigma_j^{m_{ji}}$, for any $1 \leq i \leq d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

$$h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$$

Clearly, h_M is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_M h_{M'} = h_{MM'}$, whence $\varphi : \operatorname{GL}(d, \mathbb{Z}) \to \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_M$ is a group homomorphism.

Given M, the action $g \mapsto h_M g h_M^{-1}$ on \mathcal{G} sends σ_i to $\prod_j \sigma_j^{m_j}$, for any $1 \leq i \leq d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$. Consider $\mathcal{K} := \varphi(\operatorname{GL}(d, \mathbb{Z})) \leq \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \operatorname{GL}(d, \mathbb{Z})$.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

$$h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$$

Clearly, h_M is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_M h_{M'} = h_{MM'}$, whence $\varphi : \operatorname{GL}(d, \mathbb{Z}) \to \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_M$ is a group homomorphism.

Given M, the action $g \mapsto h_M g h_M^{-1}$ on \mathcal{G} sends σ_i to $\prod_j \sigma_j^{m_{ji}}$, for any $1 \leq i \leq d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$. Consider $\mathcal{K} := \varphi(\operatorname{GL}(d,\mathbb{Z})) \leq \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \operatorname{GL}(d,\mathbb{Z})$. Any $h \in \mathcal{R}(\mathbb{X})$ acts on $\sigma_1 \dots \sigma_d$, this induces $\psi : \mathcal{R}(\mathbb{X}) \to \operatorname{GL}(d,\mathbb{Z}) \simeq \mathcal{K}$.

The extended symmetry group of the full shift $\mathbb{X} = \mathcal{A}^{\mathbb{Z}^d}$ is given by $\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \operatorname{GL}(d, \mathbb{Z}).$

Let $M \in \operatorname{GL}(d,\mathbb{Z})$ and consider the mapping $x \mapsto h_M(x)$ defined by

$$h_M(x)_{\mathbf{n}} := x_{M^{-1}\mathbf{n}}.$$

Clearly, h_M is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_M h_{M'} = h_{MM'}$, whence $\varphi : \operatorname{GL}(d, \mathbb{Z}) \to \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_M$ is a group homomorphism.

Given M, the action $g \mapsto h_M g h_M^{-1}$ on \mathcal{G} sends σ_i to $\prod_j \sigma_j^{m_j}$, for any $1 \leq i \leq d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$. Consider $\mathcal{K} := \varphi(\operatorname{GL}(d, \mathbb{Z})) \leq \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \operatorname{GL}(d, \mathbb{Z})$. Any $h \in \mathcal{R}(\mathbb{X})$ acts on $\sigma_1 \dots \sigma_d$, this induces $\psi : \mathcal{R}(\mathbb{X}) \to \operatorname{GL}(d, \mathbb{Z}) \simeq \mathcal{K}$. So $\varphi \circ \psi$ is a group endomorphism of $\mathcal{R}(\mathbb{X})$ into \mathcal{K} with kernel $\mathcal{S}(\mathbb{X})$, and which fixes \mathcal{K} . Hence

$$\mathcal{R}(\mathbb{X}) \,=\, \mathcal{S}(\mathbb{X})
times \mathcal{K} \,\simeq\, \mathcal{S}(\mathbb{X})
times \mathrm{GL}(d,\mathbb{Z}).$$

Some useful lemmas

Recall the definition of $\psi : \mathcal{R}(\mathbb{X}) \to \mathrm{GL}(d,\mathbb{Z})$.

э

Recall the definition of $\psi : \mathcal{R}(\mathbb{X}) \to \mathrm{GL}(d, \mathbb{Z})$.

Lemma (CHL, extended symmetries)

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a shift over a finite alphabet \mathcal{A} , with faithful shift action. Then any $\Phi \in \mathcal{R}(\mathbb{X})$ is of the form $\Phi = \tilde{\Phi}h_M$ with $M = \psi(\Phi)$ and where $\tilde{\Phi} : h_M(\mathbb{X}) \to \mathbb{X}$ is again a sliding block map.

Recall the definition of $\psi : \mathcal{R}(\mathbb{X}) \to \mathrm{GL}(d, \mathbb{Z})$.

Lemma (CHL, extended symmetries)

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a shift over a finite alphabet \mathcal{A} , with faithful shift action. Then any $\Phi \in \mathcal{R}(\mathbb{X})$ is of the form $\Phi = \tilde{\Phi}h_M$ with $M = \psi(\Phi)$ and where $\tilde{\Phi} : h_M(\mathbb{X}) \to \mathbb{X}$ is again a sliding block map.

Lemma (extended symmetry groups as semidirect products)

Let $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}^d}$ be a shift with faithful \mathbb{Z}^d -action and symmetry group $\mathcal{S}(\mathbb{X})$. Assume further that $\mathcal{R}(\mathbb{X})$ contains a subgroup \mathcal{H} that satisfies $\mathcal{H} \simeq \psi(\mathcal{H})$ together with $\psi(\mathcal{H}) = \psi(\mathcal{R}(\mathbb{X}))$. Then, the extended symmetry group of $(\mathbb{X}, \mathbb{Z}^d)$ is

$$\mathcal{R}(\mathbb{X}) = \mathcal{S}(\mathbb{X}) \rtimes \mathcal{H}.$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Chair Substitution's extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift \mathbb{X}_C has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

The Chair shift \mathbb{X}_C has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

7 / 22

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G}, +\alpha)$ is its MEF, with $\pi : \mathbb{X} \to \mathcal{G}$ the corresponding factor map. Then, there is a group homomorphism $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ such that

$$\pi(\Phi(x)) = \kappa(\Phi) + \pi(x)$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$.

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G}, +\alpha)$ is its MEF, with $\pi : \mathbb{X} \to \mathcal{G}$ the corresponding factor map. Then, there is a group homomorphism $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ such that

$$\pi(\Phi(x)) = \kappa(\Phi) + \pi(x)$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa(\mathbb{Z}^d)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta : \mathcal{R}(\mathbb{X}) \to \mathcal{H}(\mathcal{G})$, with

$$\kappa(\Phi\Psi) = \kappa(\Phi) + \zeta(\Phi)(\kappa(\Psi))$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi) + \zeta(\Phi)(z)$.

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G}, +\alpha)$ is its MEF, with $\pi : \mathbb{X} \to \mathcal{G}$ the corresponding factor map. Then, there is a group homomorphism $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ such that

$$\pi(\Phi(x)) = \kappa(\Phi) + \pi(x)$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa(\mathbb{Z}^d)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta : \mathcal{R}(\mathbb{X}) \to \mathcal{H}(\mathcal{G})$, with

$$\kappa(\Phi\Psi) = \kappa(\Phi) + \zeta(\Phi)(\kappa(\Psi))$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi) + \zeta(\Phi)(z)$. If $c := \min\{|\pi^{-1}(z)| : z \in \mathcal{G}\} < \infty$, then $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ and $\kappa : \mathcal{R}(\mathbb{X}) \setminus \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ are each at most c-to-one,

Let $(\mathbb{X}, \mathbb{Z}^d)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G}, +\alpha)$ is its MEF, with $\pi : \mathbb{X} \to \mathcal{G}$ the corresponding factor map. Then, there is a group homomorphism $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ such that

$$\pi(\Phi(x)) = \kappa(\Phi) + \pi(x)$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa(\mathbb{Z}^d)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta : \mathcal{R}(\mathbb{X}) \to \mathcal{H}(\mathcal{G})$, with

$$\kappa(\Phi\Psi) = \kappa(\Phi) + \zeta(\Phi)(\kappa(\Psi))$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi) + \zeta(\Phi)(z)$. If $c := \min\{|\pi^{-1}(z)| : z \in \mathcal{G}\} < \infty$, then $\kappa : \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ and $\kappa : \mathcal{R}(\mathbb{X}) \setminus \mathcal{S}(\mathbb{X}) \to \mathcal{G}$ are each at most *c*-to-one, and for any d > c, $\{z \in \mathcal{G} | \pi^{-1}(z) | = d\} = \zeta(\{z \in \mathcal{G} : |\pi^{-1}(z)| = d\}) + \kappa(\Phi)$ holds for each $\Phi \in \mathcal{R}(\mathbb{X})$.

The maximal equicontinuous factor of the Chair shift (X_c, T_1, T_2) is $(\mathbb{Z}_2 \times \mathbb{Z}_2, +(1, 0), +(0, 1))$. The factor mapping $\pi : X_c \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

The maximal equicontinuous factor of the Chair shift (X_c, T_1, T_2) is $(\mathbb{Z}_2 \times \mathbb{Z}_2, +(1, 0), +(0, 1))$. The factor mapping $\pi : X_c \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings".

The maximal equicontinuous factor of the Chair shift (X_c, T_1, T_2) is $(\mathbb{Z}_2 \times \mathbb{Z}_2, +(1, 0), +(0, 1))$. The factor mapping $\pi : X_c \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings". Each point in X_c is associated with a *block structure*, which is described by a point in $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The maximal equicontinuous factor of the Chair shift (X_c, T_1, T_2) is $(\mathbb{Z}_2 \times \mathbb{Z}_2, +(1, 0), +(0, 1))$. The factor mapping $\pi : X_c \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings". Each point in X_c is associated with a *block structure*, which is described by a point in $\mathbb{Z}_2 \times \mathbb{Z}_2$. The block structure does not tell you much, or possibly anything, about the entries of the point $x = (x_{m,n})_{m,n \in \mathbb{Z}}$, but only about the way x is tiled

with substitution squares.

A block structure

Dashed lines are the basic configuration grid. Black lines are boundaries of θ -words. Red lines are boundaries of θ^2 -words. Blue lines are boundaries of θ^3 -words.

Another block structure

Dashed lines are the basic configuration grid. Black lines are boundaries of θ -words. Red lines are boundaries of θ^2 -words. Blue lines are boundaries of θ^3 -words.

The block structure graph: Finding repeated block structures

э

The block structure graph: Finding repeated block structures

The block structure graph: Finding repeated block structures

Theorem

The set of complete block structures with multiple preimages are paths $\begin{pmatrix} 0\\0 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix} \bigcirc \{p,r\}$ $\{q,s\}$ $\bigcirc \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\0 \end{pmatrix}$

that eventually lie in:

Reem Yassawi

글 🛌 😑

The block structure of a point in $\pi^{-1}\left(\left(egin{array}{c} 0 \\ 0 \end{array}
ight), \left(egin{array}{c} 0 \\ 0 \end{array}
ight)
ight)$

Reem Yassawi

글 > : < 글 >

3

The block structure of a point in $\pi^{-1}\left(\begin{pmatrix} 0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0 \end{pmatrix}\right)$, with one choice made $x_{0,0} = p$

Reem Yassawi

3

3

If we see a block structure z in $\binom{\binom{0}{1}\binom{1}{1}}{0}$ (**) $\binom{\binom{0}{1}\binom{1}{1}}{0}$ which has infinitely many occurrences of both $\binom{0}{0}$ and $\binom{1}{1}$ then $|\pi^{-1}(z)| = 2$, and the two preimages of z agree everywhere off y = x.

If we see a block structure z in $\binom{\binom{n}{2}\binom{1}{1}}{\binom{(m)}{0}}$ $\binom{(m)}{(m)}$ $\binom{\binom{n}{2}\binom{\binom{n}{2}}{\binom{n}{1}}$ which has infinitely many occurrences of both $\binom{0}{0}$ and $\binom{1}{1}$ then $|\pi^{-1}(z)| = 2$, and the two preimages of z agree everywhere off y = x. If we see a block structure z which has only entries from $\begin{pmatrix} 0\\1 \end{pmatrix}$ and $\left(egin{array}{c} 1 \\ 0 \end{array}
ight)$ then $|\pi^{-1}(z)|=2$, and the two preimages of z agree everywhere off

v = -x.

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

э

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

Sketch of Proof

"The" σ -fixed point has square symmetry, which is why every element of D_4 corresponds to an extended symmetry.

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

Sketch of Proof

"The" σ -fixed point has square symmetry, which is why every element of D_4 corresponds to an extended symmetry. D_4 is a maximal finite subgroup of $GL(2,\mathbb{Z})$.

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

Sketch of Proof

"The" σ -fixed point has square symmetry, which is why every element of D_4 corresponds to an extended symmetry.

 D_4 is a maximal finite subgroup of $GL(2,\mathbb{Z})$.

Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

Sketch of Proof

"The" σ -fixed point has square symmetry, which is why every element of D_4 corresponds to an extended symmetry.

 D_4 is a maximal finite subgroup of $GL(2,\mathbb{Z})$.

Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.

We need to show there are no such extended symmetries.

The Chair shift has $\mathbb{Z}^2 \rtimes D_4$ as extended symmetry group.

Sketch of Proof

"The" σ -fixed point has square symmetry, which is why every element of D_4 corresponds to an extended symmetry.

 D_4 is a maximal finite subgroup of $GL(2,\mathbb{Z})$.

Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.

We need to show there are no such extended symmetries.

Recall that we can write every extended symmetry $\Phi = \Psi h_M$ for some $M \in GL(2\mathbb{Z})$, and Ψ a sliding block code.

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in X_C either which

- I disagree on the main diagonal, and agree everywhere else, or
- 2 disagree on the diagonal y = -x and agree everywhere else.

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in X_C either which

I disagree on the main diagonal, and agree everywhere else, or

2 disagree on the diagonal y = -x and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F} .

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in X_C either which

I disagree on the main diagonal, and agree everywhere else, or

2 disagree on the diagonal y = -x and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F} .

Finishing the proof of the theorem If M is parabolic or hyperbolic, then

 $M(\{y = x, \text{ or } y = -x\}) \neq \{y = x, y = -x\}.$

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in X_C either which

I disagree on the main diagonal, and agree everywhere else, or

2 disagree on the diagonal y = -x and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F} .

Finishing the proof of the theorem If M is parabolic or hyperbolic, then

 $M(\{y = x, \text{ or } y = -x\}) \neq \{y = x, y = -x\}.$

Thus h_M sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F} .

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in X_C either which

I disagree on the main diagonal, and agree everywhere else, or

3 disagree on the diagonal y = -x and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F} .

Finishing the proof of the theorem If M is parabolic or hyperbolic, then

$$M(\{y = x, \text{ or } y = -x\}) \neq \{y = x, y = -x\}.$$

Thus h_M sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F} . But $\Phi = \Psi \circ h_M : X_c \to X_c$ sends elements of \mathcal{F} to points in \mathcal{F} .

$$X_c \stackrel{h_M}{\rightarrow} h_M(X_c) \stackrel{\Psi}{\rightarrow} X_c.$$

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which

I disagree on the main diagonal, and agree everywhere else, or

3 disagree on the diagonal y = -x and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F} .

Finishing the proof of the theorem If M is parabolic or hyperbolic, then

 $M(\{y = x, \text{ or } y = -x\}) \neq \{y = x, y = -x\}.$

Thus h_M sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F} . But $\Phi = \Psi \circ h_M : X_c \to X_c$ sends elements of \mathcal{F} to points in \mathcal{F} .

$$X_c \stackrel{h_M}{\to} h_M(X_c) \stackrel{\Psi}{\to} X_c$$

But since Ψ is a sliding block code, $\Psi(h_M(x, y))$ cannot belong to $\mathcal{F}_{=}$

Some linear cellular automata satisfy symmetry rigidity. Let $\Phi : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ and let $\mathbb{Y} \subset \mathcal{A}^{\mathbb{Z}^2}$ be the space of all possible spacetime diagrams for Φ ; \mathbb{Y} is a 2-dimensional shift $(\mathbb{Y}, \sigma_h, \sigma_v)$, invariant under Haar measure.

Theorem (Kitchens & Schmidt, 2000)

Let Φ_1 and Φ_2 generate shifts of spacetime diagrams \mathbb{Y}_1 and \mathbb{Y}_2 . Suppose that $(\mathbb{Y}_1, \sigma_h, \sigma_v)$ and $(\mathbb{Y}_2, \sigma_h, \sigma_v)$ are mixing and irreducible. Then every measurable conjugacy F is almost everywhere an affine map, i.e. F(x) = G(x) + c almost everywhere with G a group isomorphism.

Theorem (Kitchens & Schmidt, 2000)

If $\Phi : \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ is the Ledrappier map $\Phi(x) = x + \sigma(x)$, then any topological self conjugacy $F : \mathbb{Y} \to \mathbb{Y}$ is of the form $F(x) = \sigma_h^m \sigma_v^n(x)$ for some m and n.

<ロ> (四) (四) (三) (三) (三) (三)

The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift \mathbb{X}_L has $\mathbb{Z}^2 \rtimes D_3$ as extended symmetry group.

The Ledrappier shift \mathbb{X}_L has $\mathbb{Z}^2 \rtimes D_3$ as extended symmetry group.

Some proof ideas: The following matrices send "Ledrappier" triangles to "Ledrappier" triangles

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \right\};$$

they constitute D_3 . The maximal finite subgroup containing D_3 is D_6 , which is generated by the extra matrix $M = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. We will show that M does not give any extended symmetries.

The Ledrappier shift \mathbb{X}_L has $\mathbb{Z}^2 \rtimes D_3$ as extended symmetry group.

Some proof ideas: The following matrices send "Ledrappier" triangles to "Ledrappier" triangles

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} \right\};$$

they constitute D_3 . The maximal finite subgroup containing D_3 is D_6 , which is generated by the extra matrix $M = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}^{\frac{1}{2}} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$. We will show that M does not give any extended symmetries. A computation gives that

$$\mathbb{Y} := h_M(\mathbb{X}_L) = \{ x \in \{0,1\}^{\mathbb{Z}^2} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2 \}.$$

$$\mathbb{X}_{L} = \{ x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2 \}.$$

 $\mathbb{Y} := h_M(\mathbb{X}_L) = \{ x \in \{0,1\}^{\mathbb{Z}^2} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2 \}.$

→ 프 → - 프

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$
$$\mathbb{Y} := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$
Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - の々で

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$
$$\mathbb{Y} := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$
Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$
$$\mathbb{Y} := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$
Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.
Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$

$$\mathbb{Y} := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$
Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form
 $\Phi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.
Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.
So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y} , determines the
image of the half plane below r^{*} . But knowledge of r^{*} determines the half
plane above r^{*} . This contradicts the fact that Ψ is injective.

イロト イ理ト イヨト イヨト

■ のへで

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$

$$\mathbb{Y} := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$
Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form
 $\Phi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.
Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.
So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y} , determines the image of the half plane below r^{*} . But knowledge of r^{*} determines the half plane above r^{*} . This contradicts the fact that Ψ is injective.
So D_{3} is the maximal finite subgroup in $\mathcal{R}(X_{L})$.

(

F

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

$$\mathbb{X}_{L} = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m,n+1)} \equiv 0 \mod 2\}.$$

$$Y := h_{M}(\mathbb{X}_{L}) = \{x \in \{0,1\}^{\mathbb{Z}^{2}} : x_{(m,n)} + x_{(m+1,n)} + x_{(m+1,n-1)} \equiv 0 \mod 2\}.$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form
 $\Psi = \Psi \circ h_{M}$, with $\Psi : \mathbb{Y} \to \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.
Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.
So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y} , determines the
mage of the half plane below r^{*} . But knowledge of r^{*} determines the half
plane above r^{*} . This contradicts the fact that Ψ is injective.
So D_{3} is the maximal finite subgroup in $\mathcal{R}(X_{L})$.
Now to exclude elements of infinite order, refine this argument, along with

use of

5

p

Lemma

The only annihilating triangles in X_L of area $\frac{1}{2}$ are the Ledrappier triangles.

22 / 22

글 🕨 🛛 글