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Definition
Let (X, σ) be a faithful shift action. A homeomorphism Φ : X→ X is a
symmetry of (X, σ) if Φ ◦ σ = σ ◦ Φ.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition
Let (X, σ) be a faithful shift action. A homeomorphism Φ : X→ X is a
reversor of (X, σ) if Φ ◦ σ = σ−1 ◦ Φ.

Example

X = AZ, R(x)n := x−n; R is a reflection.

Definition (Symmetry group, Reversing symmetry group)

S(X) := {Φ : X→ X : Φ is a homeomorphism,Φ ◦ σ = σ ◦ Φ}
R(X) := {Φ : X→ X : Φ is a homeomorphism,Φ ◦ σ = σ±1 ◦ Φ}
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The Curtis-Hedlund-Lyndon theorem for Reversors

Lemma
Let X be a faithful one-dimensional shift over the finite alphabet A. For
any reversor Φ ∈ R(X) \ S(X), there are non-negative integers `, r and a
map φ : A`+r+1 → A such that (Φ(x))n = φ(x−n−r , . . . , x−n, . . . , x−n+`).

In other words, if Φ ∈ R(X) \ S(X), then Φ = Ψ ◦ R where Ψ : R(X )→ X
is a sliding block code.
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Higher dimensional "reversors"

Let (X, σ1, σ2) be a Z2-shift over a finite A (G := 〈σ1, σ2〉 ' Z2).

Let H be
the group of homeomorphisms of X. Then

S(X) = centH(G) = {h ∈ H : hσm1 σ
n
2 = σm1 σ

n
2h, for m, n ∈ Z};

so we define the extended symmetry group

R(X) := normH(G) = {h ∈ H : hG = Gh}.

Note that hG = Gh is only possible when the conjugation action
g 7→ hgh−1 sends a set of generators of G to a (possibly different) set of
generators. Since G is a free Abelian group of rank 2 by our assumption, its
automorphism group is Aut (G) ' GL(2,Z), the group of integer
2×2-matrices M with det(M) ∈ {±1}.
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Example: The full shift

The extended symmetry group of the full shift X = AZd
is given by

R(X) ' S(X) o GL(d ,Z).

Let M ∈ GL(d ,Z) and consider the mapping x 7→ hM(x) defined by

hM(x)n := xM−1n.

Clearly, hM is a continuous mapping of X into itself and is invertible.
Also, hMhM′ = hMM′ , whence ϕ : GL(d ,Z)→ H(X) defined by M 7→ hM
is a group homomorphism.
Given M, the action g 7→ hMgh−1

M on G sends σi to
∏

j σ
mji

j , for any
1 6 i 6 d , so ϕ(M) ∈ R(X).
Consider K := ϕ(GL(d ,Z)) 6 R(X). Since ϕ is injective, K ' GL(d ,Z).
Any h ∈ R(X) acts on σ1 . . . σd , this induces ψ : R(X)→ GL(d ,Z) ' K.
So ϕ ◦ ψ is a group endomorphism of R(X) into K with kernel S(X), and
which fixes K. Hence

R(X) = S(X) oK ' S(X) o GL(d ,Z).
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Some useful lemmas

Recall the definition of ψ : R(X)→ GL(d ,Z).

Lemma (CHL, extended symmetries)

Let (X,Zd) be a shift over a finite alphabet A, with faithful shift action.
Then any Φ ∈ R(X) is of the form Φ = Φ̃hM with M = ψ(Φ) and where
Φ̃ : hM(X)→ X is again a sliding block map.

Lemma (extended symmetry groups as semidirect products)

Let X ⊆ AZd
be a shift with faithful Zd -action and symmetry group S(X).

Assume further that R(X) contains a subgroup H that satisfies H ' ψ(H)
together with ψ(H) = ψ(R(X)). Then, the extended symmetry group of
(X,Zd) is

R(X) = S(X) oH.
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The Chair Substitution’s extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift XC has Z2 o D4 as extended symmetry group.

p s r q
0 1 2 3

s p

p q
θ(p) =

s r

r q
θ(r) =

q r

p q
θ(q) =

s r

p s
θ(s) =
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Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let (X,Zd) be a one-dimensional faithful shift and at least one dense orbit.
Suppose further that the group rotation (G,+α) is its MEF, with
π : X→ G the corresponding factor map.
Then, there is a group homomorphism κ : S(X)→ G such that

π(Φ(x)) = κ(Φ) + π(x)

holds for all x ∈ X and G ∈ S(X).

Moreover, if κ(Zd) is a free Abelian
group there is an extension of κ to a 1-cocycle of the action of R(X) on G
by ζ : R(X)→ H(G), with

κ(ΦΨ) = κ(Φ) + ζ(Φ)(κ(Ψ))

for all Φ,Ψ ∈ R(X). Any Φ ∈ R(X) induces a unique mapping on G that
acts as z 7→ κ(Φ) + ζ(Φ)(z). If c := min{|π−1(z)| : z ∈ G} <∞, then
κ : S(X)→ G and κ : R(X) \ S(X)→ G are each at most c-to-one, and
for any d > c , {z ∈ G|π−1(z)| = d} = ζ({z ∈ G : |π−1(z)| = d}) + κ(Φ)
holds for each Φ ∈ R(X).
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The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)
The maximal equicontinuous factor of the Chair shift (Xc ,T1,T2) is
(Z2 × Z2,+(1, 0),+(0, 1)). The factor mapping π : Xc → Z2 × Z2 is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings". Each point in Xc is associated with a block structure ,
which is described by a point in Z2 × Z2.
The block structure does not tell you much, or possibly anything, about the
entries of the point x = (xm,n)m,n∈Z, but only about the way x is tiled
with substitution squares.

Reem Yassawi Reversing and Extended Symmetry groups of shiftsFriday 16th June 2017 9 / 22



The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)
The maximal equicontinuous factor of the Chair shift (Xc ,T1,T2) is
(Z2 × Z2,+(1, 0),+(0, 1)). The factor mapping π : Xc → Z2 × Z2 is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings".

Each point in Xc is associated with a block structure ,
which is described by a point in Z2 × Z2.
The block structure does not tell you much, or possibly anything, about the
entries of the point x = (xm,n)m,n∈Z, but only about the way x is tiled
with substitution squares.

Reem Yassawi Reversing and Extended Symmetry groups of shiftsFriday 16th June 2017 9 / 22



The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)
The maximal equicontinuous factor of the Chair shift (Xc ,T1,T2) is
(Z2 × Z2,+(1, 0),+(0, 1)). The factor mapping π : Xc → Z2 × Z2 is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings". Each point in Xc is associated with a block structure ,
which is described by a point in Z2 × Z2.

The block structure does not tell you much, or possibly anything, about the
entries of the point x = (xm,n)m,n∈Z, but only about the way x is tiled
with substitution squares.

Reem Yassawi Reversing and Extended Symmetry groups of shiftsFriday 16th June 2017 9 / 22



The Chair substitution’s maximal equicontinuous factor

Theorem (Robinson, 1999)
The maximal equicontinuous factor of the Chair shift (Xc ,T1,T2) is
(Z2 × Z2,+(1, 0),+(0, 1)). The factor mapping π : Xc → Z2 × Z2 is
almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

"The points where the factor mapping fails to be 1-to-1 correspond to
interesting tilings". Each point in Xc is associated with a block structure ,
which is described by a point in Z2 × Z2.
The block structure does not tell you much, or possibly anything, about the
entries of the point x = (xm,n)m,n∈Z, but only about the way x is tiled
with substitution squares.

Reem Yassawi Reversing and Extended Symmetry groups of shiftsFriday 16th June 2017 9 / 22



A block structure

Dashed lines are the basic configuration grid.
Black lines are boundaries of θ-words.
Red lines are boundaries of θ2-words.
Blue lines are boundaries of θ3-words.

The block structure of a point in π−1
((

0
0

)
,
(

0
0

)
,
(

0
0

))
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The block structure graph: Finding repeated block
structures

s p

p q
θ(p) =
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r q
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Theorem
The set of complete block structures with multiple preimages are paths

that eventually lie in:
{p, r} {q, s}
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The Chair substitution
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The Chair substitution
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In this way we have

Theorem (Robinson, 1999)

If we see a block structure z in {p, r} {q, s}



0
0


,




1
1




(
0
1

)
,
(

1
0

)

which has

infinitely many occurences of both
(

0
0

)
and

(
1
1

)
then |π−1(z)| = 2,

and the two preimages of z agree everywhere off y = x .

If we see a block structure z which has only entries from
(

0
1

)
and

(
1
0

)
then |π−1(z)| = 2, and the two preimages of z agree everywhere off

y = −x .
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The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has Z2 o D4 as extended symmetry group.

Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of
D4 corresponds to an extended symmetry.
D4 is a maximal finite subgroup of GL(2,Z).
Thus, by Selberg’s lemma, if there are any other extended symmetries they
must by generated by a matrix with infinite order: i.e. a parabolic or
hyperbolic matrix.
We need to show there are no such extended symmetries.
Recall that we can write every extended symmetry Φ = ΨhM for some
M ∈ GL(2Z), and Ψ a sliding block code.
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The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999, Baake-Roberts-Y, 2016)
There exist (uncountably) many pairs of points in XC either which

1 disagree on the main diagonal, and agree everywhere else, or
2 disagree on the diagonal y = −x and agree everywhere else.

Let F be the set of pairs of such points. An extended symmetry must send
an element of F to an element of F .
Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

M({y = x , or y = −x}) 6= {y = x , y = −x}.
Thus hM sends an element of F to a pair (x , y) not in F . But
Φ = Ψ ◦ hM : Xc → Xc sends elements of F to points in F .

Xc
hM→ hM(Xc)

Ψ→ Xc .

But since Ψ is a sliding block code, Ψ(hM(x , y)) cannot belong to F .
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The Ledrappier shift

Some linear cellular automata satisfy symmetry rigidity. Let Φ : AZ → AZ

and let Y ⊂ AZ2
be the space of all possible spacetime diagrams for Φ; Y

is a 2-dimensional shift (Y, σh, σv ), invariant under Haar measure.

Theorem (Kitchens & Schmidt, 2000)
Let Φ1 and Φ2 generate shifts of spacetime diagrams Y1 and Y2. Suppose
that (Y1, σh, σv ) and (Y2, σh, σv ) are mixing and irreducible. Then every
measurable conjugacy F is almost everywhere an affine map, i.e.
F (x) = G (x) + c almost everywhere with G a group isomorphism.

Theorem (Kitchens & Schmidt, 2000)

If Φ : {0, 1}Z → {0, 1}Z is the Ledrappier map Φ(x) = x + σ(x), then any
topological self conjugacy F : Y→ Y is of the form F (x) = σmh σ

n
v (x) for

some m and n.
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The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift XL has Z2 o D3 as extended symmetry group.

Some proof ideas: The following matrices send "Ledrappier" triangles to
"Ledrappier" triangles
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
−1 −1
0 1

)
,

(
0 1
−1 −1

)
,

(
1 0
−1 −1

)
,

(
−1 −1
1 0

)}
;

they constitute D3. The maximal finite subgroup containing D3 is D6,
which is generated by the extra matrix M =

( 0 1
−1 −1

) 1
2 =

( 0 −1
1 1

)
. We will

show that M does not give any extended symmetries. A computation gives
that

Y := hM(XL) = {x ∈ {0, 1}Z2
: x(m,n)+x(m+1,n)+x(m+1,n−1) ≡ 0 mod 2}.
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XL = {x ∈ {0, 1}Z2
: x(m,n) + x(m+1,n) + x(m,n+1) ≡ 0 mod 2}.

Y := hM(XL) = {x ∈ {0, 1}Z2
: x(m,n)+x(m+1,n)+x(m+1,n−1) ≡ 0 mod 2}.

Note that Y 6= XL so if there is a reversor, it must be of the form
Φ = Ψ ◦ hM , with Ψ : Y→ XL nontrivial.
Knowledge of a row in x ∈ XL determines everything above it.
Knowledge of a row in y ∈ Y determines everything below it.
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