Reversing and Extended Symmetry groups of shifts

Michael Baake, John Roberts \& Reem Yassawi

Friday 16th June 2017

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Our symmetry=your automorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma^{-1} \circ \Phi$.

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma^{-1} \circ \Phi$.

Example

$\mathbb{X}=\mathcal{A}^{\mathbb{Z}}, R(x)_{n}:=x_{-n} ; R$ is a reflection.

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a symmetry of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma \circ \Phi$.

Our symmetry=your automorphism!
Our automorphism=your homeomorphism!

Definition

Let (\mathbb{X}, σ) be a faithful shift action. A homeomorphism $\Phi: \mathbb{X} \rightarrow \mathbb{X}$ is a reversor of (\mathbb{X}, σ) if $\Phi \circ \sigma=\sigma^{-1} \circ \Phi$.

Example

$\mathbb{X}=\mathcal{A}^{\mathbb{Z}}, R(x)_{n}:=x_{-n} ; R$ is a reflection.
Definition (Symmetry group, Reversing symmetry group)

$$
\mathcal{S}(\mathbb{X}):=\{\Phi: \mathbb{X} \rightarrow \mathbb{X}: \Phi \text { is a homeomorphism, } \Phi \circ \sigma=\sigma \circ \Phi\}
$$

$\mathcal{R}(\mathbb{X}):=\left\{\Phi: \mathbb{X} \rightarrow \mathbb{X}: \Phi\right.$ is a homeomorphism, $\left.\Phi \circ \sigma=\sigma^{ \pm 1} \circ \Phi\right\}$

The Curtis-Hedlund-Lyndon theorem for Reversors

Lemma

Let \mathbb{X} be a faithful one-dimensional shift over the finite alphabet \mathcal{A}. For any reversor $\Phi \in \mathcal{R}(\mathbb{X}) \backslash \mathcal{S}(\mathbb{X})$, there are non-negative integers ℓ, r and a $\operatorname{map} \phi: \mathcal{A}^{\ell+r+1} \rightarrow \mathcal{A}$ such that $(\Phi(x))_{n}=\phi\left(x_{-n-r}, \ldots, x_{-n}, \ldots, x_{-n+\ell}\right)$.

The Curtis-Hedlund-Lyndon theorem for Reversors

Lemma

Let \mathbb{X} be a faithful one-dimensional shift over the finite alphabet \mathcal{A}. For any reversor $\Phi \in \mathcal{R}(\mathbb{X}) \backslash \mathcal{S}(\mathbb{X})$, there are non-negative integers ℓ, r and a $\operatorname{map} \phi: \mathcal{A}^{\ell+r+1} \rightarrow \mathcal{A}$ such that $(\Phi(x))_{n}=\phi\left(x_{-n-r}, \ldots, x_{-n}, \ldots, x_{-n+\ell}\right)$.

In other words, if $\Phi \in \mathcal{R}(\mathbb{X}) \backslash \mathcal{S}(\mathbb{X})$, then $\Phi=\Psi \circ R$ where $\Psi: R(X) \rightarrow X$ is a sliding block code.

Higher dimensional "reversors"

Let $\left(\mathbb{X}, \sigma_{1}, \sigma_{2}\right)$ be a \mathbb{Z}^{2}-shift over a finite $\mathcal{A}\left(\mathcal{G}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \simeq \mathbb{Z}^{2}\right)$.

Higher dimensional "reversors"

Let $\left(\mathbb{X}, \sigma_{1}, \sigma_{2}\right)$ be a \mathbb{Z}^{2}-shift over a finite $\mathcal{A}\left(\mathcal{G}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \simeq \mathbb{Z}^{2}\right)$. Let \mathcal{H} be the group of homeomorphisms of \mathbb{X}. Then

$$
\mathcal{S}(\mathbb{X})=\operatorname{cent}_{\mathcal{H}}(\mathcal{G})=\left\{h \in \mathcal{H}: h \sigma_{1}^{m} \sigma_{2}^{n}=\sigma_{1}^{m} \sigma_{2}^{n} h, \text { for } m, n \in \mathbb{Z}\right\} ;
$$

Higher dimensional "reversors"

Let $\left(\mathbb{X}, \sigma_{1}, \sigma_{2}\right)$ be a \mathbb{Z}^{2}-shift over a finite $\mathcal{A}\left(\mathcal{G}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \simeq \mathbb{Z}^{2}\right)$. Let \mathcal{H} be the group of homeomorphisms of \mathbb{X}. Then

$$
\mathcal{S}(\mathbb{X})=\operatorname{cent}_{\mathcal{H}}(\mathcal{G})=\left\{h \in \mathcal{H}: h \sigma_{1}^{m} \sigma_{2}^{n}=\sigma_{1}^{m} \sigma_{2}^{n} h, \text { for } m, n \in \mathbb{Z}\right\} ;
$$

so we define the extended symmetry group

$$
\mathcal{R}(\mathbb{X}):=\operatorname{norm}_{\mathcal{H}}(\mathcal{G})=\{h \in \mathcal{H}: h \mathcal{G}=\mathcal{G} h\} .
$$

Higher dimensional "reversors"

Let $\left(\mathbb{X}, \sigma_{1}, \sigma_{2}\right)$ be a \mathbb{Z}^{2}-shift over a finite $\mathcal{A}\left(\mathcal{G}:=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \simeq \mathbb{Z}^{2}\right)$. Let \mathcal{H} be the group of homeomorphisms of \mathbb{X}. Then

$$
\mathcal{S}(\mathbb{X})=\operatorname{cent}_{\mathcal{H}}(\mathcal{G})=\left\{h \in \mathcal{H}: h \sigma_{1}^{m} \sigma_{2}^{n}=\sigma_{1}^{m} \sigma_{2}^{n} h, \text { for } m, n \in \mathbb{Z}\right\} ;
$$

so we define the extended symmetry group

$$
\mathcal{R}(\mathbb{X}):=\operatorname{norm}_{\mathcal{H}}(\mathcal{G})=\{h \in \mathcal{H}: h \mathcal{G}=\mathcal{G} h\} .
$$

Note that $h \mathcal{G}=\mathcal{G} h$ is only possible when the conjugation action $g \mapsto h g h^{-1}$ sends a set of generators of \mathcal{G} to a (possibly different) set of generators. Since \mathcal{G} is a free Abelian group of rank 2 by our assumption, its automorphism group is $\operatorname{Aut}(\mathcal{G}) \simeq G L(2, \mathbb{Z})$, the group of integer 2×2-matrices M with $\operatorname{det}(M) \in\{ \pm 1\}$.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \operatorname{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}}
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \mathrm{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}}
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_{M} h_{M^{\prime}}=h_{M M^{\prime}}$, whence $\varphi: \operatorname{GL}(d, \mathbb{Z}) \rightarrow \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_{M}$ is a group homomorphism.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \mathrm{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}} .
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_{M} h_{M^{\prime}}=h_{M M^{\prime}}$, whence $\varphi: \mathrm{GL}(d, \mathbb{Z}) \rightarrow \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_{M}$ is a group homomorphism.
Given M, the action $g \mapsto h_{M} g h_{M}^{-1}$ on \mathcal{G} sends σ_{i} to $\prod_{j} \sigma_{j}^{m_{j i}}$, for any $1 \leqslant i \leqslant d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \mathrm{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}}
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_{M} h_{M^{\prime}}=h_{M M^{\prime}}$, whence $\varphi: \mathrm{GL}(d, \mathbb{Z}) \rightarrow \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_{M}$ is a group homomorphism.
Given M, the action $g \mapsto h_{M} g h_{M}^{-1}$ on \mathcal{G} sends σ_{i} to $\prod_{j} \sigma_{j}^{m_{j i}}$, for any $1 \leqslant i \leqslant d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$.
Consider $\mathcal{K}:=\varphi(\mathrm{GL}(d, \mathbb{Z})) \leqslant \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \mathrm{GL}(d, \mathbb{Z})$.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \operatorname{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}}
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_{M} h_{M^{\prime}}=h_{M M^{\prime}}$, whence $\varphi: \mathrm{GL}(d, \mathbb{Z}) \rightarrow \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_{M}$ is a group homomorphism.
Given M, the action $g \mapsto h_{M} g h_{M}^{-1}$ on \mathcal{G} sends σ_{i} to $\prod_{j} \sigma_{j}^{m_{j i}}$, for any $1 \leqslant i \leqslant d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$.
Consider $\mathcal{K}:=\varphi(\mathrm{GL}(d, \mathbb{Z})) \leqslant \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \operatorname{GL}(d, \mathbb{Z})$. Any $h \in \mathcal{R}(\mathbb{X})$ acts on $\sigma_{1} \ldots \sigma_{d}$, this induces $\psi: \mathcal{R}(\mathbb{X}) \rightarrow \operatorname{GL}(d, \mathbb{Z}) \simeq \mathcal{K}$.

Example: The full shift

The extended symmetry group of the full shift $\mathbb{X}=\mathcal{A}^{\mathbb{Z}^{d}}$ is given by

$$
\mathcal{R}(\mathbb{X}) \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Let $M \in \operatorname{GL}(d, \mathbb{Z})$ and consider the mapping $x \mapsto h_{M}(x)$ defined by

$$
h_{M}(x)_{\mathbf{n}}:=x_{M^{-1} \mathbf{n}} .
$$

Clearly, h_{M} is a continuous mapping of \mathbb{X} into itself and is invertible. Also, $h_{M} h_{M^{\prime}}=h_{M M^{\prime}}$, whence $\varphi: \mathrm{GL}(d, \mathbb{Z}) \rightarrow \mathcal{H}(\mathbb{X})$ defined by $M \mapsto h_{M}$ is a group homomorphism.
Given M, the action $g \mapsto h_{M} g h_{M}^{-1}$ on \mathcal{G} sends σ_{i} to $\prod_{j} \sigma_{j}^{m_{j i}}$, for any $1 \leqslant i \leqslant d$, so $\varphi(M) \in \mathcal{R}(\mathbb{X})$.
Consider $\mathcal{K}:=\varphi(\mathrm{GL}(d, \mathbb{Z})) \leqslant \mathcal{R}(\mathbb{X})$. Since φ is injective, $\mathcal{K} \simeq \mathrm{GL}(d, \mathbb{Z})$. Any $h \in \mathcal{R}(\mathbb{X})$ acts on $\sigma_{1} \ldots \sigma_{d}$, this induces $\psi: \mathcal{R}(\mathbb{X}) \rightarrow \operatorname{GL}(d, \mathbb{Z}) \simeq \mathcal{K}$. So $\varphi \circ \psi$ is a group endomorphism of $\mathcal{R}(\mathbb{X})$ into \mathcal{K} with kernel $\mathcal{S}(\mathbb{X})$, and which fixes \mathcal{K}. Hence

$$
\mathcal{R}(\mathbb{X})=\mathcal{S}(\mathbb{X}) \rtimes \mathcal{K} \simeq \mathcal{S}(\mathbb{X}) \rtimes \mathrm{GL}(d, \mathbb{Z})
$$

Some useful lemmas

Recall the definition of $\psi: \mathcal{R}(\mathbb{X}) \rightarrow \mathrm{GL}(d, \mathbb{Z})$.

Some useful lemmas

Recall the definition of $\psi: \mathcal{R}(\mathbb{X}) \rightarrow \mathrm{GL}(d, \mathbb{Z})$.

Lemma (CHL, extended symmetries)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a shift over a finite alphabet \mathcal{A}, with faithful shift action. Then any $\Phi \in \mathcal{R}(\mathbb{X})$ is of the form $\Phi=\tilde{\Phi} h_{M}$ with $M=\psi(\Phi)$ and where $\tilde{\Phi}: h_{M}(\mathbb{X}) \rightarrow \mathbb{X}$ is again a sliding block map.

Some useful lemmas

Recall the definition of $\psi: \mathcal{R}(\mathbb{X}) \rightarrow \operatorname{GL}(d, \mathbb{Z})$.

Lemma (CHL, extended symmetries)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a shift over a finite alphabet \mathcal{A}, with faithful shift action. Then any $\Phi \in \mathcal{R}(\mathbb{X})$ is of the form $\Phi=\tilde{\Phi} h_{M}$ with $M=\psi(\Phi)$ and where $\tilde{\Phi}: h_{M}(\mathbb{X}) \rightarrow \mathbb{X}$ is again a sliding block map.

Lemma (extended symmetry groups as semidirect products)

Let $\mathbb{X} \subseteq \mathcal{A}^{\mathbb{Z}^{d}}$ be a shift with faithful \mathbb{Z}^{d}-action and symmetry group $\mathcal{S}(\mathbb{X})$. Assume further that $\mathcal{R}(\mathbb{X})$ contains a subgroup \mathcal{H} that satisfies $\mathcal{H} \simeq \psi(\mathcal{H})$ together with $\psi(\mathcal{H})=\psi(\mathcal{R}(\mathbb{X}))$. Then, the extended symmetry group of $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ is

$$
\mathcal{R}(\mathbb{X})=\mathcal{S}(\mathbb{X}) \rtimes \mathcal{H}
$$

The Chair Substitution's extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift \mathbb{X}_{C} has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.

The Chair Substitution's extended symmetry group

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift \mathbb{X}_{C} has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.

Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G},+\alpha)$ is its MEF, with $\pi: \mathbb{X} \rightarrow \mathcal{G}$ the corresponding factor map.
Then, there is a group homomorphism $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ such that

$$
\pi(\Phi(x))=\kappa(\Phi)+\pi(x)
$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$.

Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G},+\alpha)$ is its MEF, with $\pi: \mathbb{X} \rightarrow \mathcal{G}$ the corresponding factor map.
Then, there is a group homomorphism $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ such that

$$
\pi(\Phi(x))=\kappa(\Phi)+\pi(x)
$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa\left(\mathbb{Z}^{d}\right)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta: \mathcal{R}(\mathbb{X}) \rightarrow \mathcal{H}(\mathcal{G})$, with

$$
\kappa(\Phi \Psi)=\kappa(\Phi)+\zeta(\Phi)(\kappa(\Psi))
$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi)+\zeta(\Phi)(z)$.

Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G},+\alpha)$ is its MEF, with $\pi: \mathbb{X} \rightarrow \mathcal{G}$ the corresponding factor map.
Then, there is a group homomorphism $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ such that

$$
\pi(\Phi(x))=\kappa(\Phi)+\pi(x)
$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa\left(\mathbb{Z}^{d}\right)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta: \mathcal{R}(\mathbb{X}) \rightarrow \mathcal{H}(\mathcal{G})$, with

$$
\kappa(\Phi \Psi)=\kappa(\Phi)+\zeta(\Phi)(\kappa(\Psi))
$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi)+\zeta(\Phi)(z)$. If $c:=\min \left\{\left|\pi^{-1}(z)\right|: z \in \mathcal{G}\right\}<\infty$, then $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ and $\kappa: \mathcal{R}(\mathbb{X}) \backslash \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ are each at most c-to-one,

Lemma (Coven, 1973, Baake-Roberts-Y, 2016)

Let $\left(\mathbb{X}, \mathbb{Z}^{d}\right)$ be a one-dimensional faithful shift and at least one dense orbit. Suppose further that the group rotation $(\mathcal{G},+\alpha)$ is its MEF, with $\pi: \mathbb{X} \rightarrow \mathcal{G}$ the corresponding factor map.
Then, there is a group homomorphism $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ such that

$$
\pi(\Phi(x))=\kappa(\Phi)+\pi(x)
$$

holds for all $x \in \mathbb{X}$ and $G \in \mathcal{S}(\mathbb{X})$. Moreover, if $\kappa\left(\mathbb{Z}^{d}\right)$ is a free Abelian group there is an extension of κ to a 1-cocycle of the action of $\mathcal{R}(\mathbb{X})$ on \mathcal{G} by $\zeta: \mathcal{R}(\mathbb{X}) \rightarrow \mathcal{H}(\mathcal{G})$, with

$$
\kappa(\Phi \Psi)=\kappa(\Phi)+\zeta(\Phi)(\kappa(\Psi))
$$

for all $\Phi, \Psi \in \mathcal{R}(\mathbb{X})$. Any $\Phi \in \mathcal{R}(\mathbb{X})$ induces a unique mapping on \mathcal{G} that acts as $z \mapsto \kappa(\Phi)+\zeta(\Phi)(z)$. If $c:=\min \left\{\left|\pi^{-1}(z)\right|: z \in \mathcal{G}\right\}<\infty$, then $\kappa: \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ and $\kappa: \mathcal{R}(\mathbb{X}) \backslash \mathcal{S}(\mathbb{X}) \rightarrow \mathcal{G}$ are each at most c-to-one, and for any $d>c,\left\{z \in \mathcal{G}\left|\pi^{-1}(z)\right|=d\right\}=\zeta\left(\left\{z \in \mathcal{G}:\left|\pi^{-1}(z)\right|=d\right\}\right)+\kappa(\Phi)$ holds for each $\Phi \in \mathcal{R}(\mathbb{X})$.

The Chair substitution's maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift $\left(X_{c}, T_{1}, T_{2}\right)$ is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+(1,0),+(0,1)\right)$. The factor mapping $\pi: X_{c} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.

The Chair substitution's maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift $\left(X_{c}, T_{1}, T_{2}\right)$ is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+(1,0),+(0,1)\right)$. The factor mapping $\pi: X_{c} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.
"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings".

The Chair substitution's maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift $\left(X_{c}, T_{1}, T_{2}\right)$ is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+(1,0),+(0,1)\right)$. The factor mapping $\pi: X_{c} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.
"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings". Each point in X_{c} is associated with a block structure, which is described by a point in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

The Chair substitution's maximal equicontinuous factor

Theorem (Robinson, 1999)

The maximal equicontinuous factor of the Chair shift $\left(X_{c}, T_{1}, T_{2}\right)$ is $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+(1,0),+(0,1)\right)$. The factor mapping $\pi: X_{c} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is almost everywhere one-to-one. It is otherwise two-to-one or five-to-one.
"The points where the factor mapping fails to be 1-to-1 correspond to interesting tilings". Each point in X_{c} is associated with a block structure, which is described by a point in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
The block structure does not tell you much, or possibly anything, about the entries of the point $x=\left(x_{m, n}\right)_{m, n \in \mathbb{Z}}$, but only about the way x is tiled with substitution squares.

A block structure

Dashed lines are the basic configuration grid. Black lines are boundaries of θ-words.
Red lines are boundaries of θ^{2}-words.
Blue lines are boundaries of θ^{3}-words.

The block structure of a point in $\pi^{-1}\left(\binom{0}{0},\binom{0}{0},\binom{0}{0}\right)$

Another block structure

Dashed lines are the basic configuration grid. Black lines are boundaries of θ-words.
Red lines are boundaries of θ^{2}-words.
Blue lines are boundaries of θ^{3}-words.

The block structure of a point in $\pi^{-1}\left(\binom{0}{0},\binom{0}{0},\binom{1}{1}\right)$

The block structure graph: Finding repeated block structures

$\theta(p)=$| s | p |
| :--- | :--- |
| p | q |

$\theta(r)=$| s | r |
| :--- | :--- |
| r | q |

$\theta(q)=$| q | r |
| :--- | :--- |
| p | q |

$\theta(s)=$| s | r |
| :--- | :--- |
| p | s |

The block structure graph: Finding repeated block structures

The block structure graph: Finding repeated block

 structures

Theorem

The set of complete block structures with multiple preimages are paths that eventually lie in:
$\binom{0}{0} \cdot\binom{1}{1} \longrightarrow\{p, r\}$ $\{q, s\})\binom{0}{1},\binom{1}{0}$

The Chair substitution

The block structure of a point in $\pi^{-1}\left(\binom{0}{0}\right)$

The Chair substitution

$$
\theta(p)=\begin{array}{|l|l|}
\hline s & p \\
\hline p & q \\
\hline
\end{array} \quad \theta(r)=\begin{array}{|l|l|}
\hline s & r \\
\hline r & q \\
\hline
\end{array} \quad \theta(q)=\begin{array}{|l|l|}
\hline q & r \\
\hline p & q \\
\hline
\end{array} \quad \theta(s)=\begin{array}{|l|l|}
\hline s & r \\
\hline p & s \\
\hline
\end{array}
$$

							$\begin{array}{c:c} S & \text { or }_{r} \\ \hdashline \text { or }_{r} & q \end{array}$
,	,	,	,	,	i	$\mathrm{S}_{\mathrm{i}} \mathrm{p}$ or	-
-	1	1	1	1	1	$S: \mathrm{or}_{r}$	1
1	1	1	!	1	1	$p_{\text {or }}{ }_{r}: \bar{q}$	1
!	!	$!$	$!$	I	$S{ }_{\text {c }} p_{\text {or }}$!	!
!	,	1	1	!	$\mathrm{p}^{\text {or }}{ }_{r}: q$!	1
!	I	I	!	$S:{ }^{\text {por }}$	1	!	!
,	!	1		$p_{\text {or }}: q$	1	1	1
1	T	1	$S: p_{r}$	1	1	I	1
i	1	1	$\begin{array}{\|l:l} p_{\text {or }} & \bar{q} \\ \boldsymbol{r}_{1} \\ \hline \end{array}$	${ }_{1}^{+}$		i	+
I	I	$S:{ }_{\text {Por }}$!	!	!	!
		-- -		- - - -	- + -	,	
,	1	$\text { or }_{r!}$	1	!	1	,	1
!	$S:{ }^{\text {P }}$ or ${ }_{\text {c }}$	I	!	$\stackrel{1}{1}$	1	!	$!$
,	$\bar{p}_{\text {or }_{r},}^{\prime} \bar{q}$	1	!	1	+	!	1
ip	1	1	,	1	+	,	,
$S: \mathrm{or}_{r}$!	1	1	1	1	1	1
$p_{\text {or }}$: $: q$	1	,	1	1	1	I	1

The block structure of a point in $\pi^{-1}\left(\binom{0}{0},\binom{0}{0}\right)$

The Chair substitution

$$
\theta(p)=\begin{array}{|l|l|}
\hline s & p \\
\hline p & q \\
\hline
\end{array} \quad \theta(r)=\begin{array}{|l|l|}
\hline s & r \\
\hline r & q \\
\hline
\end{array} \quad \theta(q)=\begin{array}{|l|l|}
\hline q & r \\
\hline p & q \\
\hline
\end{array} \quad \theta(s)=\begin{array}{|l|l|}
\hline s & r \\
\hline p & s \\
\hline
\end{array}
$$

				$\begin{gathered} 1 \\ \vdots \\ -7-1 \end{gathered}$	$\begin{array}{r} : \\ -1 \\ -1 \\ :-- \end{array}$		$\begin{array}{\|c:c} \hline S & \text { or }_{r} \\ \hdashline p_{\text {or }} & q \\ \hdashline{ }^{2} \end{array}$
	i					S ipor	
	+	1	1	1	-1	S or ${ }_{\text {or }}$	- -
I	,	1	1	1	1	${ }^{\text {or }}$ r: $: q$,
1	!	!	,	!	$S:_{1}^{p} \mathrm{or}_{r}$!	!
-	,	-	-	-	$\bar{p}_{\text {or }}{ }^{\text {c: }}$	+	1
।	1	1	1	1	$\mathrm{or}_{r^{\prime}}$ ף	1	1
!	!	!	!	$s: p$	I	1	!
I	I	!	1	$p: q$	1	!	1
T	,	T		- 1	T	T	
I	1	1	S, or ${ }_{r}$	1	1	1	1
1	,	,	$p_{\text {or }} \bar{q}$	1	1	,	1
-1	1		r_{1}				
1	I	S : ${ }_{\text {or }}$	1	!	I	I	I
1	1	$S:$ or $_{r}$	1	1	1	1	1
+	1	$p_{\text {or: }}: q$	1	1	1	,	,
1	1	or ${ }_{r}$, 9				1	1
I	$S: \mathrm{or}_{r}$!	1	!	!	!	1
-	$\bar{p}_{\text {or }}: \bar{q}$	-	1	1	+--	${ }_{+}^{+}$	1
1	${ }^{\text {or }}$ r 19	1	1	1	1	1	1
$S: p_{\text {or }}$	1	1	1	1	,	,	,
$\text { or }_{r}: q$	1	1	1	1	1	1	1

The block structure of a point in $\pi^{-1}\left(\binom{0}{0},\binom{0}{0}\right)$, with one choice made $x_{0,0}=p$

The Chair substitution

The block structure of a point in $\pi^{-1}\left(\binom{0}{0},\binom{0}{0},\binom{0}{0}\right)$, with $x_{0,0}=p$

In this way we have

Theorem (Robinson, 1999)

 infinitely many occurences of both $\binom{0}{0}$ and $\binom{1}{1}$ then $\left|\pi^{-1}(z)\right|=2$, and the two preimages of z agree everywhere off $y=x$.

In this way we have

Theorem (Robinson, 1999)

 infinitely many occurences of both $\binom{0}{0}$ and $\binom{1}{1}$ then $\left|\pi^{-1}(z)\right|=2$, and the two preimages of z agree everywhere off $y=x$.

If we see a block structure z which has only entries from $\binom{0}{1}$ and
$\binom{1}{0}$ then $\left|\pi^{-1}(z)\right|=2$, and the two preimages of z agree everywhere off $y=-x$.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.
Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of D_{4} corresponds to an extended symmetry.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.
Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of
D_{4} corresponds to an extended symmetry.
D_{4} is a maximal finite subgroup of $G L(2, \mathbb{Z})$.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.
Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of
D_{4} corresponds to an extended symmetry.
D_{4} is a maximal finite subgroup of $G L(2, \mathbb{Z})$.
Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.
Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of
D_{4} corresponds to an extended symmetry.
D_{4} is a maximal finite subgroup of $G L(2, \mathbb{Z})$.
Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.
We need to show there are no such extended symmetries.

The Chair substitution

Theorem (Baake, Roberts, Y, 2016.)

The Chair shift has $\mathbb{Z}^{2} \rtimes D_{4}$ as extended symmetry group.
Sketch of Proof
"The" σ-fixed point has square symmetry, which is why every element of
D_{4} corresponds to an extended symmetry.
D_{4} is a maximal finite subgroup of $G L(2, \mathbb{Z})$.
Thus, by Selberg's lemma, if there are any other extended symmetries they must by generated by a matrix with infinite order: i.e. a parabolic or hyperbolic matrix.
We need to show there are no such extended symmetries.
Recall that we can write every extended symmetry $\Phi=\Psi h_{M}$ for some $M \in G L(2 \mathbb{Z})$, and Ψ a sliding block code.

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F}.

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F}.

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

$$
M(\{y=x, \text { or } y=-x\}) \neq\{y=x, y=-x\} .
$$

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F}.

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

$$
M(\{y=x, \text { or } y=-x\}) \neq\{y=x, y=-x\} .
$$

Thus h_{M} sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F}.

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F}.

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

$$
M(\{y=x, \text { or } y=-x\}) \neq\{y=x, y=-x\} .
$$

Thus h_{M} sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F}. But $\Phi=\Psi \circ h_{M}: X_{c} \rightarrow X_{c}$ sends elements of \mathcal{F} to points in \mathcal{F}.

$$
X_{c} \xrightarrow{h_{M}} h_{M}\left(X_{c}\right) \xrightarrow{\psi} X_{c} .
$$

The problem with parabolic and hyperbolic matrices

Lemma (Robinson, 1999,

There exist (uncountably) many pairs of points in \mathbb{X}_{C} either which
(1) disagree on the main diagonal, and agree everywhere else, or
(2) disagree on the diagonal $y=-x$ and agree everywhere else.

Let \mathcal{F} be the set of pairs of such points. An extended symmetry must send an element of \mathcal{F} to an element of \mathcal{F}.

Finishing the proof of the theorem
If M is parabolic or hyperbolic, then

$$
M(\{y=x, \text { or } y=-x\}) \neq\{y=x, y=-x\} .
$$

Thus h_{M} sends an element of \mathcal{F} to a pair (x, y) not in \mathcal{F}. But $\Phi=\Psi \circ h_{M}: X_{c} \rightarrow X_{c}$ sends elements of \mathcal{F} to points in \mathcal{F}.

$$
X_{c} \xrightarrow{h_{M}} h_{M}\left(X_{c}\right) \xrightarrow{\psi} X_{c} .
$$

But since Ψ is a sliding block code, $\Psi\left(h_{M}(x, y)\right)$ cannot belong to $\mathcal{F}_{\text {In }}$

The Ledrappier shift

Some linear cellular automata satisfy symmetry rigidity. Let $\Phi: \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ and let $\mathbb{Y} \subset \mathcal{A}^{\mathbb{Z}^{2}}$ be the space of all possible spacetime diagrams for $\Phi ; \mathbb{Y}$ is a 2-dimensional shift ($\mathbb{Y}, \sigma_{h}, \sigma_{v}$), invariant under Haar measure.

Theorem (Kitchens \& Schmidt, 2000)

Let Φ_{1} and Φ_{2} generate shifts of spacetime diagrams \mathbb{Y}_{1} and \mathbb{Y}_{2}. Suppose that $\left(\mathbb{Y}_{1}, \sigma_{h}, \sigma_{v}\right)$ and $\left(\mathbb{Y}_{2}, \sigma_{h}, \sigma_{v}\right)$ are mixing and irreducible. Then every measurable conjugacy F is almost everywhere an affine map, i.e. $F(x)=G(x)+c$ almost everywhere with G a group isomorphism.

Theorem (Kitchens \& Schmidt, 2000)

If $\Phi:\{0,1\}^{\mathbb{Z}} \rightarrow\{0,1\}^{\mathbb{Z}}$ is the Ledrappier map $\Phi(x)=x+\sigma(x)$, then any topological self conjugacy $F: \mathbb{Y} \rightarrow \mathbb{Y}$ is of the form $F(x)=\sigma_{h}^{m} \sigma_{v}^{n}(x)$ for some m and n.

The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift \mathbb{X}_{L} has $\mathbb{Z}^{2} \rtimes D_{3}$ as extended symmetry group.

The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift \mathbb{X}_{L} has $\mathbb{Z}^{2} \rtimes D_{3}$ as extended symmetry group.
Some proof ideas: The following matrices send "Ledrappier" triangles to "Ledrappier" triangles
$\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)\right\}$;
they constitute D_{3}. The maximal finite subgroup containing D_{3} is D_{6}, which is generated by the extra matrix $M=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)^{\frac{1}{2}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$. We will show that M does not give any extended symmetries.

The extended symmetries of the Ledrappier shift

Theorem (Baake, Roberts, Y, 2016)

The Ledrappier shift \mathbb{X}_{L} has $\mathbb{Z}^{2} \rtimes D_{3}$ as extended symmetry group.
Some proof ideas: The following matrices send "Ledrappier" triangles to "Ledrappier" triangles
$\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & -1 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right),\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)\right\}$;
they constitute D_{3}. The maximal finite subgroup containing D_{3} is D_{6}, which is generated by the extra matrix $M=\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)^{\frac{1}{2}}=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$. We will show that M does not give any extended symmetries. A computation gives that

$$
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
$$

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
\end{gathered}
$$

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\} .
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it. Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it. Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it. So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y}, determines the image of the half plane below r^{*}. But knowledge of r^{*} determines the half plane above r^{*}. This contradicts the fact that Ψ is injective.

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\}
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it. Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it. So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y}, determines the image of the half plane below r^{*}. But knowledge of r^{*} determines the half plane above r^{*}. This contradicts the fact that Ψ is injective. So D_{3} is the maximal finite subgroup in $\mathcal{R}\left(X_{L}\right)$.

$$
\begin{gathered}
\mathbb{X}_{L}=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m, n+1)} \equiv 0 \quad \bmod 2\right\} \\
\mathbb{Y}:=h_{M}\left(\mathbb{X}_{L}\right)=\left\{x \in\{0,1\}^{\mathbb{Z}^{2}}: x_{(m, n)}+x_{(m+1, n)}+x_{(m+1, n-1)} \equiv 0 \quad \bmod 2\right\} .
\end{gathered}
$$

Note that $\mathbb{Y} \neq \mathbb{X}_{L}$ so if there is a reversor, it must be of the form $\Phi=\Psi \circ h_{M}$, with $\Psi: \mathbb{Y} \rightarrow \mathbb{X}_{L}$ nontrivial.
Knowledge of a row in $x \in \mathbb{X}_{L}$ determines everything above it.
Knowledge of a row in $y \in \mathbb{Y}$ determines everything below it.
So the image a row r in $x \in \mathbb{X}_{L}$, which is a row r^{*} in \mathbb{Y}, determines the image of the half plane below r^{*}. But knowledge of r^{*} determines the half plane above r^{*}. This contradicts the fact that Ψ is injective.
So D_{3} is the maximal finite subgroup in $\mathcal{R}\left(X_{L}\right)$.
Now to exclude elements of infinite order, refine this argument, along with use of

Lemma

The only annihilating triangles in X_{L} of area $\frac{1}{2}$ are the Ledrappier triangles.

